An Efficient Algorithm for Ranking Research Papers based on Citation Network

Abstract - In this paper we propose an efficient method to rank the research papers from various fields of research published in various conferences over the years. This ranking method is based on citation network. The importance of a research paper is captured well by the peer vote, which in this case is the research paper being cited in other research papers. Using a modified version of the PageRank algorithm, we rank the research papers, assigning each of them an authoritative score. Using the scores of the research papers calculated by above mentioned method, we formulate scores for conferences and authors and rank them as well. We have introduced a new metric in the algorithm which takes into account the time factor in ranking the research papers to reduce the bias against the recent papers which get less time for being studied and consequently cited by the researchers as compared to the older papers. Often a researcher is more interested in finding the top conferences in a particular year rather than the overall conference ranking. Considering the year of publication of the papers, in addition to the paper scores we also calculated the year-wise score of each conference by slight improvisation of the above mentioned algorithm.

Keywords - Ranking, Citation Network, Authoritative Score

I. INTRODUCTION

Thousands of research papers are published every year and these papers span various fields of research. For a new researcher, it becomes a very difficult task to go through the entire repository of research papers in order to determine the important ones. The term important is subjective but it can be assured that a research paper that is popular will be important in most cases. There can be several ways of determining whether a research paper is important depending on the field of work, conference of publication, etc.

In this paper we propose an efficient method to rank the research papers from various fields of research published in various conferences over the years. Our method is based on the citation network of the research papers. Research papers cite other research papers from which they derive inspiration and there exists a well-connected graph structure among the network of research papers. The importance of a research paper is directly proportional to the number of research papers that cite it. We have used this concept in our algorithm.

Often a researcher might be more interested in knowing about the important conferences and authors from the field of his/her research. Using the research paper scores as determined by our algorithm, we formulate the conference scores. A conference is as good as the research paper that it publishes. We have used this notion to rank the conferences based on the quality of research papers published by them. For an author, not only the quality of research paper published by him/her but also the quality of conference in which he/she publishes the paper is important. So for the author scores, we use both the research paper scores and the conference scores for all the research papers published by the authors.

A system ranking research papers, conferences and authors can have various applications. Some straightforward uses can be:

- Looking up the quality of a given research paper
- Comparing two or more research papers
- Comparing the research papers published in a given year
- Comparing the research papers published at a conference
- Comparing two or more conferences
- Comparing the quality of a conference as years pass
- Comparing two or more authors
- Comparing the research papers by a particular author

II. RELATED WORK

There has been considerable work in the field of academic research. Most of the work is on researcher profiling, which aim at ranking the authors. The work by Quinkun Zhao et al. [9] is one such work, which studies the relationship between authors using community mining techniques. Other work is ArnetMiner [8] which ranks the authors on h-index [5] and conferences on impact factor [4].

Our main focus here is to rank the research papers. The rankings for conferences and authors are derived from the research paper ranks. Most work on academic research uses number of citations as the metric. However, it is quite intuitive that this metric ignores the importance of the quality of citations, taking into consideration only the quantity of citations. The metrics like h-index, g-index and impact factor are based on the number of citations, and hence would not give correct results in all cases. We use a modified version of the PageRank algorithm [7], which considers the quality of the citing paper to rank the
paper being cited. Also, unlike in h-index, here we need not remove the self-citations because our main focus is ranking research papers. Author ranking is taken care of by the research paper scores. The metric impact factor has another drawback that it uses only the citations from only the last two years, which simply neglects the effect of papers on comparatively older papers that they cite. It is to be noted that the metrics based on number of citations are highly discipline-dependent. This effect is diminished by the fact that if a field has more number of citations in general than the other fields, the division by number of citations during contribution of a citing node works in the same way as normalization works.

There has been some work on academic research using PageRank algorithm like the work by Ying Ding et al. [3], where author co-citation network is used to rank the authors.

Rest of the paper is organized as follows: Section 3 describes our ranking algorithms. Section 4 presents the experiments and results. Section 5 talks about some applications of our algorithms and section 6 concludes our work.

III. OUR APPROACH

Our method is entirely based on the graph structure of the citation network formed by the research papers.

Definition 1. Citation Graph: We define the citation graph $G = (V, E)$ comprising a set V of nodes, which each node N_i representing a research paper R_i and a set E of directed edges, with each edge E_{ij} directed from the citing node N_i to the cited node N_j.

We will build the citation network defined as a graph, with each research paper representing a node and the citations representing the edges in the graph, the edges being directed ones, directed from the citing node to the cited node. Each node has several attributes viz. research paper title, author(s), year of publication and conference of publication.

A. The Ranking Algorithm

The algorithm for ranking the research papers based on citation network uses the two types of edges in a graph:

Definition 2. Outlinks: From a given node N, link all the nodes N_i that the node N cites.

Definition 3. Inlinks: To a given node N, link all the nodes N_j that cite the node N.

These *outlinks* and *inlinks* will be used while calculating the authoritative score [6] for each node. The algorithm for ranking the research papers consists of two parts:

- Creating the *outlinks* and the *inlinks*.
- Using modified iterative PageRank algorithm to calculate the authoritative score for each node.

The above two parts are implemented by the following two procedures.

Procedure 1: Create Outlinks and Inlinks

Require: Paper Citation PC

1: Paper Outlinks $PO = PC$
2: for each paper P in PO
3: Citations List $CL = PC[P]$
4: Outlinks Count $OC[P] = CL.length()$
5: for each citation C in CL
6: if C in P
7: $append P$ to $P[C]$
8: else
9: $P[C] = [P]$

The procedure 1 uses paper citations and creates a data structure mapping each paper to its inlinks and outlinks.

In the procedure, we first determine the list of all the papers a paper cites (Step 3). Corresponding to each paper, the number of outlinks is stored in OC (Step 4). Then from step 5 to step 9, we form the data structure to store the inlinks corresponding to each paper.

Procedure 2: Modified Iterative PageRank Algorithm

Require: Citation Network CN, Paper Year PY, Outlinks Count OC, Paper Inlinks PI, Damping Factor θ

1: Initialize Paper Rank PR to 1.0 for each paper R
2: while true
3: $flag = true$
4: for each paper R in PR
5: Current Score $CS = PR[R]$
6: if R in PI
7: Inlinks List $IL = PI[R]$
8: New Score $NS = 0.0$
9: for each inlink I in IL
10: if I in PR
11: NS += $PR[I]/OC[I]$
12: $NS = (1-\theta) + \theta NS$
13: if CS is not equal to NS
14: $flag = false$
15: Updated Paper Rank $UPR[R] = NS$
16: if $flag$ is equal to true
17: break
18: copy UPR to PR
19: clear UPR
20: Maximum Score $MS = Maximum Score in PR$
21: for each paper R in PR
22: $PR[R] = MS$

The procedure 2 is essentially a modified version of...
the iterative PageRank Algorithm. The iterative PageRank algorithm starts with initializing all the candidates to a constant value, generally unity and then it iteratively modifies each candidate's score depending on the score of the candidates that point towards it. It stops when all the candidate scores converge, i.e. become constant.

Step 1 initializes the score of each paper to unity. Step 2 to 19 is the iterative calculation of the authoritative score for each paper. The iteration stops when there is no change in the score of any paper during the iteration. This is signified by no change in value of flag set to true in step 3; flag is set to false in step 13 and 14 if there is a change in the score of any paper during the update step. From step 4 to 15, for each paper, a new authoritative score is calculated based on the scores of the inlinks in the previous iteration (Step 9 to 11). The PageRank algorithm is based on the fact that the quality of a node is equivalent to the summation of the qualities of the nodes that point to it. In this case, quality refers to the score of the research paper. Now if a research paper cites more than one research paper, it is obvious that it has drawn inspiration from various sources and hence its effect on the score of the paper it cites should diminish by a factor equal to the number of paper it cites. This fact is used in step 11 by dividing the inlink score by the number outlinks of the inlink. Step 12 modifies the score calculated above to incorporate the damping factor. The use of damping factor is required to prevent the scores of research papers that do not have any inlinks from falling to zero. The value of damping factor is set to 0.85 [1].

The formula for calculating the score at a given iteration is:

$$NS = 0.15 + 0.85 \times \sum_{i} (\frac{PR[i]}{OC[i]})$$

In step 20 to 22, we normalize the scores to scale down the scores within the range [0, 1].

Thus, finally we get the authoritative scores of each research paper based on the score of the research papers that have cited it.

The above algorithm is fairly sufficient for ranking the research papers. But there is one important aspect that has not been considered yet – time. It is quite obvious how time is a very important factor when it comes to ranking the research papers. The older research papers obviously have more time to be studied by the researchers all over the world and consequently be cited in various research papers. The newer ones fall behind in this aspect. To make our algorithm time-independent, we need to have some normalization of the scores based on time.

B. Time-independent Scoring

To make the algorithm time-independent, we need a time-dependent metric that can be used in our formula for the authoritative score in the algorithm. The metric we propose to use is the Average Number of Citations per Paper in a year, i.e. the average of the total number of citations of the research papers published in each year. This metric is suitable for normalization with respect to time as it captures the fact that an older paper has more time to be cited by researchers in comparison to the recent papers.

We need to modify the formula for calculation of NS in the procedure 2, to incorporate time-independence. For each research paper, we have the year of its publication. Using the year of publication of all the research papers, we will pre-compute the total number of citations for each year and the number of research papers published in each year. Using them, we will determine the average number of citations per paper for each year.

The following pseudo-code needs to be added to the procedure 2, before step 1.

0a: for each paper \(r \) in \(PY \)

b: \(Y = PY[r] \)

c: Year Citation Count \(YCC[Y] \leftarrow OC[r] \)

d: Year Paper Count \(YPC[Y] \)

e: for each year \(Y \) in \(YCC \)

f: Average Year Citations Count \(AYCC[Y] = \frac{YCC[Y]}{YPC[Y]} \)

Once we have the average number of citations per year, we need to modify the formula for calculating the authoritative score. We will simply divide the NS by the average number of citations in the year of publication of the paper concerned. The change required in procedure 2 is in step 12:

12a: \(Y = PY[r] \)

b: \(NS = (1-\theta) \times \frac{PR[r]}{OC[r]} + \theta \times \frac{AYCC[Y]}{NS.4YCC[Y]} \)

C. Ranking Conferences

The rank of a conference depends on the quality of research papers it publishes. This is the key idea behind our algorithm for ranking conferences. Using the authoritative scores for the research papers, we will rank the various conferences by calculating a cumulative authoritative score for each conference. The score for a conference will essentially be the average score of all the research papers published in that conference.

The formula for the score of a conference is:

Conference Score \(CS = \sum (\text{Paper Score} \times \text{Number of Papers published in the Conference}) / \text{Number of Papers published in the Conference} \)

An extension of the ranking of the conferences is ranking the conferences year-wise and not as a whole. For example, we might want to know whether VLDB1990 was better than SIGMOD1992 in terms of the quality of research papers published or was it vice-versa or we might want to know how the quality of research papers
published in KDD is varying over the years.

For this, we need to make a small change in the way the conference score is being calculated. Earlier we used just the conference name as the key for scoring the conference score. Now we concatenate the year of publication to the conference of publication to the conference name and use this concatenated term as the key. Thus we have keys based on year-wise granularity like KDD1999, ICDE1991, etc.

The formula for the score of the conference remains the same:

\[
\text{Conference Yearwise Score} = \frac{\sum\text{(Paper Score)} \times \text{(Number of Papers published in the Conference in a given year)}}{\text{NPCI}(C)[Y]}
\]

D. Ranking Authors

The rank of an author depends not only on the quality of research papers but also the conference he/she publishes his/her papers in. For ranking authors, thus we will use the scores of the research papers published by the author as well as the score of the conference in which the paper was published. This would incorporate the fact that publication in a comparatively better conference is more difficult. The authoritative score for the authors thus is essentially a weighted mean of the scores of the research paper the author has published, with the score of the conference as the weight.

The formula for the score of an author is:

\[
\text{Author Score} = \frac{\sum\text{(Paper Score) } \times \text{ (Conference Score)}}{\text{(Number of Papers published by the Author NPCA}[A])}
\]

IV. EXPERIMENTS AND RESULTS

A. Dataset

For building the citation network, we used the DBLP XML Records available at http://dblp.uni-trier.de/xml/ [2].

The DBLP dataset contains information about various research papers from various fields published over the years. This information includes the name of the research paper, its author(s), the year of publication, the conference of publication and the list of research papers the given research paper cites. We built the citation network defined as a graph, with each research paper representing a node and the citations representing the edges in the graph, the edges being directed ones, directed from the citing node to the cited node. Each node is uniquely represented by the unique key from DBLP and the node has several attributes viz. research paper title, author(s), year of publication and conference of publication. It is to be noted that the DBLP dataset that we used contained citation information till the year 2010 only.

B. Data Pre-processing

The DBLP dataset also contains information that is not useful in our algorithms. We need pre-process the dataset to extract only the information that we will use in our algorithms. In data pre-processing, we extracted all the titles, author(s), conference of publication, year of publication and citations.

C. Results

We implemented our algorithms on the DBLP dataset and discovered various interesting results. The DBLP dataset contains 16,32,442 research papers from the various fields of research and published in various conferences all over the world. The iterative modified PageRank algorithm converges in 212 iterations for the DBLP dataset in the time dependent domain and in 32 iterations in the time independent domain. This shows that the time independent algorithm converges faster than the time dependent algorithm. This is because the authoritative scores of the papers are more uniform in the time independent domain due to the normalization by Average Number of Citations per Paper.

The ranked list of research papers, conferences and authors produced by our experiments were verified and found to be reasonably good by the field experts.

C.1. Ranking Research Papers

The following tables show the top 10 research papers as determined by our algorithm for ranking the research papers, in time-dependent and time-independent domains.

<table>
<thead>
<tr>
<th>Title</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Relational Model of Data for Large Shared Data Banks.</td>
<td>0.71658114</td>
</tr>
<tr>
<td>Communicating Sequential Processes.</td>
<td>0.51063789</td>
</tr>
<tr>
<td>Introduction to Algorithms.</td>
<td>0.48190250</td>
</tr>
<tr>
<td>Compilers: Principles, Techniques, and Tools.</td>
<td>0.48052828</td>
</tr>
<tr>
<td>Smalltalk-80: The Language and Its Implementation</td>
<td>0.45773251</td>
</tr>
<tr>
<td>Introduction to Modern Information Retrieval.</td>
<td>0.44686714</td>
</tr>
<tr>
<td>Report on the algorithmic language ALGOL 60.</td>
<td>0.42833770</td>
</tr>
<tr>
<td>A Characterization of Ten Hidden-Surface Algorithms.</td>
<td>0.41524671</td>
</tr>
<tr>
<td>Graph-Based Algorithms for Boolean Function Manipulation.</td>
<td>0.41524671</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Title</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Algorithms</td>
<td>0.92864994</td>
</tr>
<tr>
<td>C4.5: Programs for Machine Learning</td>
<td>0.91685637</td>
</tr>
</tbody>
</table>
The following are some important observations from the above results:

- Most of the top research papers are the ones that became representatives for broad fields of research. These research papers received interest from wide range of researchers. For example, *Introduction to Algorithms* by Thomas H. Cormen et al. is a fundamental research work that finds application in variety of research domains.
- The top research papers in the time-independent domain are much more uniformly distributed over the years than the top research papers in the time-dependent domain.

The following table shows the year-wise contribution in the top 50 research papers from both the time-dependent and the time-independent domains.

<table>
<thead>
<tr>
<th>Year</th>
<th>Time Dependent</th>
<th>Time Independent</th>
<th>Year</th>
<th>Time Dependent</th>
<th>Time Independent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1960</td>
<td>2</td>
<td>0</td>
<td>1983</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1961</td>
<td>0</td>
<td>0</td>
<td>1984</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>1962</td>
<td>0</td>
<td>0</td>
<td>1985</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>1963</td>
<td>1</td>
<td>0</td>
<td>1986</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>1964</td>
<td>0</td>
<td>0</td>
<td>1987</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>1965</td>
<td>1</td>
<td>0</td>
<td>1988</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>1966</td>
<td>2</td>
<td>0</td>
<td>1989</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1967</td>
<td>0</td>
<td>0</td>
<td>1990</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1968</td>
<td>0</td>
<td>0</td>
<td>1991</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>1969</td>
<td>2</td>
<td>0</td>
<td>1992</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1970</td>
<td>2</td>
<td>1</td>
<td>1993</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>1971</td>
<td>2</td>
<td>0</td>
<td>1994</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1972</td>
<td>0</td>
<td>0</td>
<td>1995</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>1973</td>
<td>1</td>
<td>1</td>
<td>1996</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>1974</td>
<td>4</td>
<td>1</td>
<td>1997</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>1975</td>
<td>2</td>
<td>0</td>
<td>1998</td>
<td>1</td>
<td>4</td>
</tr>
</tbody>
</table>

Corresponding to the table 3, the above graph shows the variation of the number of papers in the top 50 in both time dependent and the time independent domains over the years spanning from 1970 to 2005.

On analyzing the above table and the graph, we found the following key observations:

- The time dependent result is more concentrated towards the earlier years around 1970s. In the time independent result, more research papers from the recent years around 1990s appear. This shows that our time independent algorithms reduce the bias against the recent papers.
- The research papers are more uniformly distributed over the years in the time independent result.

C.2. Conference Rank on year-wise granularity

The following tables show the top 10 conferences with scores calculated on year-wise granularity.

<table>
<thead>
<tr>
<th>Rank</th>
<th>Conference Name</th>
<th>Year</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SIGPLAN Notices</td>
<td>1974</td>
<td>1.00000000</td>
</tr>
<tr>
<td>3</td>
<td>Advances in Computer</td>
<td>1985</td>
<td>0.41621069</td>
</tr>
</tbody>
</table>
From the above tables, we observe that in the time-independent domain, the conferences from recent years are ranked higher, whereas the top conferences in the time-dependent domain are mostly from the 1970s whereas in the time-independent domain, the top conferences are mostly from 1990s and 2000s.

For better analysis, we selected two top ranked conferences namely SIGMOD and VLDB, and analyzed them by plotting their normalized scores in the time dependent and the time-independent domains over the years spanning from 1975 to 2007.

On analyzing the above graph, the following observations were obtained:

- In the time independent domain, the normalized score becomes more uniform over the years as compared to that in the time dependent domain. This is clearly visible in the graph as the time dependent graphs for both SIGMOD and VLDB show a consistent dip towards the recent years whereas the time independent graph is more uniform.

- The score for a conference in the time independent domain for a year is more than the corresponding score in the time dependent domain. This is because in the time independent domain, the scores are more uniform and hence the difference between the maximum score among all conferences and the score for any arbitrary conference is less than that in the time dependent domain. This is clearly visible in the graph showing both SIGMOD and VLDB graphs for the time independent domain being situated above the corresponding graphs for the time dependent domain.

C.3. Ranking Authors

The following tables the top 10 authors with their scores as calculated by our algorithms.

TABLE VI. TOP 10 AUTHORS IN TIME-DEPENDENT DOMAIN

<table>
<thead>
<tr>
<th>Rank</th>
<th>Author Name</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A. Nico Habermann</td>
<td>0.34606894</td>
</tr>
<tr>
<td>2</td>
<td>E. F. Codd</td>
<td>0.33449698</td>
</tr>
<tr>
<td>3</td>
<td>Van Jacobson</td>
<td>0.15132072</td>
</tr>
<tr>
<td>4</td>
<td>William E. Lorensen</td>
<td>0.13856569</td>
</tr>
<tr>
<td>5</td>
<td>Kapali P. Eswaran</td>
<td>0.11449051</td>
</tr>
<tr>
<td>6</td>
<td>Irving L. Traiger</td>
<td>0.10304509</td>
</tr>
<tr>
<td>7</td>
<td>Ivan E. Sutherland</td>
<td>0.09953599</td>
</tr>
<tr>
<td>8</td>
<td>David D. Clark</td>
<td>0.09351475</td>
</tr>
<tr>
<td>9</td>
<td>Alan J. Perlis</td>
<td>0.07604195</td>
</tr>
<tr>
<td>10</td>
<td>Jack B. Dennis</td>
<td>0.07403101</td>
</tr>
</tbody>
</table>

TABLE VII. TOP 10 AUTHORS IN TIME-INDEPENDENT DOMAIN

<table>
<thead>
<tr>
<th>Rank</th>
<th>Author Name</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Robert Szewczyk</td>
<td>0.37383376</td>
</tr>
<tr>
<td>2</td>
<td>Van Jacobson</td>
<td>0.36962722</td>
</tr>
<tr>
<td>3</td>
<td>Sergey Brin</td>
<td>0.31426408</td>
</tr>
<tr>
<td>4</td>
<td>Leo Breiman</td>
<td>0.3096264</td>
</tr>
<tr>
<td>5</td>
<td>Brygg Ullmer</td>
<td>0.30155387</td>
</tr>
<tr>
<td>6</td>
<td>Sally Floyd</td>
<td>0.29701504</td>
</tr>
<tr>
<td>7</td>
<td>William E. Lorensen</td>
<td>0.2830493</td>
</tr>
</tbody>
</table>
The observation here was that the authors that had important publications in recent years climbed up the ranking when switched from time-dependent to time-independent domain. For instance, Sergey Brin climbed from 169th in the time-dependent domain to 3rd rank in the time-independent domain.

V. APPLICATIONS
As mentioned earlier, our algorithms have a variety of applications in various fields of research, using the scores and ranks calculated by our algorithms.

A. Ranking Keywords (Theme Mining)
An important application of such a system is in the area of theme mining. Given a research paper, we can very well find out the keywords that the research paper is based on. Thus we can cluster research papers on the basis of their keywords.

Now we simply need to iterate over the keywords and find the average score of the research papers that contain that keyword. This would be the authoritative score for that keyword.

\[\text{Keyword Score } KS = \frac{\sum (\text{Paper Score } PS)}{(\text{number of research paper based on the keyword } NP[K])} \]

Using a technique similar to that used for ranking conferences on yearwise granularity, we can rank the keywords on yearwise granularity as well.

\[\text{Keyword Yearwise Score } KYS[Y] = \frac{\sum (\text{Paper Score } PS)}{(\text{number of research paper published in a given year based on the keyword } NP[Y][K])} \]

Now having the keywordYearwiseScore, we can select say the top ten keywords for each year and call that the major theme of research for that year.

B. Speculative Ranking
For a newly published research paper, we can devise a formula based on the citation network of the author(s) and the authoritative score of the conference in which the paper is published. Thus, we can incrementally add newly published research papers to the ranking system.

VI. CONCLUSIONS AND FUTURE WORK
The purpose of our work was to propose a way to identify the key research papers, conferences and authors from various fields of research. We have proposed a new and efficient method to achieve this cause. We introduced the time-independent algorithm for ranking, which as shown gives fairly satisfactory results. We analyzed the results and did a comparative study based on the ranking obtained by our algorithms.

The above work has a host of new areas of implementation. As mentioned above, we would like to implement theme mining on the keywords based on the ranking of the research papers. This can be extended to keywords in conferences, which could help new researchers to identify the conferences of his/her interest. Similarly we can also extend this work to keywords by authors.

Another future work can be the implementation of our work in recommendation systems. We can have a system identifying co-authors and recommending topics of interest, etc.

VII. REFERENCES