
Transactions on Large-Scale Data and Knowledge-Centered

Systems

by

Venkatesh J N, Uday Kiran Rage, P Krishna Reddy, Masaru Kitsuregawa

in

Transactions on Large-Scale Data and Knowledge-Centered Systems

Report No: IIIT/TR/2018/-1

Centre for Data Engineering
International Institute of Information Technology

Hyderabad - 500 032, INDIA
May 2018

Discovering Periodic-Correlated Patterns in
Temporal Databases

J. N. Venkatesh1, R. Uday Kiran2,3, P. Krishna Reddy1, and Masaru
Kitsuregawa2,4

1 Kohli Center on Intelligent Systems (KCIS),
International Institute of Information Technology Hyderabad, Hyderabad, India

2 Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
3 National Institute of Communication Technology, Japan

4 National Institute of Informatics, Tokyo, Japan
1jn.venkatesh@research.iiit.ac.in,1pkreddy@iiit.ac.in,

2{uday_rage, kitsure}@tkl.iis.u-tokyo.ac.jp

Abstract. The support and periodicity are two important dimensions
to determine the interestingness of a pattern in a dataset. Periodic-
frequent patterns are an important class of regularities that exist in a
dataset with respect to these two dimensions. Most previous models on
periodic-frequent pattern mining have focused on finding all patterns in
a transactional database that satisfy the user-specified minimum support
(minSup) and maximum periodicity (maxPer) constraints. These mod-
els suffer from the following two obstacles: (i) Current periodic-frequent
pattern models cannot handle datasets in which multiple transactions
can share a common time stamp and/or transactions occur at irregular
time intervals (ii) The usage of single minSup and maxPer for finding
the patterns leads to the rare item problem. This paper tries to address
these two obstacles by proposing a novel model to discover periodic-
correlated patterns in a temporal database. Considering the input data as
a temporal database addresses the first obstacle, while finding periodic-
correlated patterns address the second obstacle. The proposed model
employs all-confidence measure to prune the uninteresting patterns in
support dimension. A new measure, called periodic-all-confidence, is be-
ing proposed to filter out uninteresting patterns in periodicity dimension.
A pattern-growth algorithm has also been discussed to find periodic-
correlated patterns. Experimental results show that the proposed model
is efficient.

Keywords: Data mining, pattern mining, periodic patterns, rare-item
problem, pattern-growth technique

1 Introduction

Periodic-frequent pattern5 mining is an important model in data mining. It
involves discovering all patterns in a transactional database that satisfy the

5 A set of items represents a pattern (or an itemset)

2 J. N. Venkatesh, R. Uday Kiran, P. Krishna Reddy and Masaru Kitsuregawa

user-specified minimum support (minSup) and maximum periodicity (maxPer)
constraints [35]. The minSup controls the minimum number of transactions
that a pattern must cover, and the maxPer controls the maximum interval
within which a pattern must reoccur in the entire database. Finding periodic-
frequent patterns is a significant task with many business applications. A classic
application is market-basket analytics. It analyzes how regularly the itemsets are
being purchased by the customers. An example of a periodic-frequent pattern is
as follows:

{Bat,Ball} [support = 5%, periodicity = 1 hour].

The above pattern says that 5% of the customers have purchased the items ‘Bat’
and ‘Ball,’ and the maximum duration between any two consecutive purchases
containing both of these items is no more than an hour. This predictive behavior
of the customers’ purchases may facilitate the users in product recommendation
and inventory management.

Fournier-Viger et al. [11] extended the periodic-frequent pattern model to
find periodic-utility patterns in a transactional database. Amphawan et al. [2]
extended the model to find top-k periodic-frequent patterns in a transactional
database. Uday et al. [24] extended the periodic-frequent pattern model to find
partial periodic-frequent patterns in a transactional database. Nofong [27] ex-
tended the periodic-frequent pattern model to find productive periodic-frequent
patterns. In this model, a periodic-frequent pattern is considered productive if
its support is greater than the product of its subsets. The popular adoption and
successful industrial application of this model suffers from the following obsta-
cles: (i) Since the model accepts the transactional database as an input, the
model implicitly assumes that all transactions in a database occur at a fixed
time-interval. This assumption limits the applicability of the model as transac-
tions in a database may occur at irregular time intervals. (ii) The minSup and
maxPer play a key role in periodic-frequent pattern mining. They are used to
prune the search space and limit the number of patterns being generated. Since
only a single minSup and maxPer are used for the whole data, the model im-
plicitly assumes that all items in the data have uniform support and periodicity.
However, this is seldom the case in many real-world applications. In many ap-
plications, some items appear very frequently in the data, while others rarely6

appear. Moreover, rare items typically have high periodicity (i.e., inter-arrival
times) as compared against the frequent items. If the support and periodicity
of items vary a great deal, we will encounter the following two problems:

– If the maxPer is set too low and/or the minSup is set too high, we will miss
the periodic patterns involving rare items.

– To find the periodic patterns involving both frequent and rare items, we
have to set a high maxPer and a low minSup. However, this may result
in combinatorial explosion, producing too many patterns, because frequent

6 Classifying the items into either frequent or rare is a subjective issue that depends
upon the user and/or application requirements.

Discovering Periodic-Frequent Patterns in Transactional Databases 3

items can combine with one another in all possible ways and many of them
may be meaningless.

This dilemma is known as the “rare item problem.” This paper tries to address
both of these problems.

Prior to our study, researchers have tried to address the rare item prob-
lem using the concept of multiple minSup and maxPer constraints [20, 33]. In
this concept, each item in the database is specified with a minimum item sup-
port (minIS) and maximum item periodicity (maxIP). Next, the minSup and
maxPer of a pattern are specified depending on its items minIS and maxIP
values, respectively. Although this concept facilitates every pattern to satisfy a
different minSup and maxPer values, it still suffers from an open problem of
determining the items’ minIS and maxIP values.

In this paper, we propose a model to discover periodic-correlated patterns in a
temporal database. A temporal database is a collection of transactions ordered by
their timestamps. A temporal database facilitates multiple transactions to share
a common timestamp and time gaps in-between consecutive transactions. Thus,
considering the input data as a temporal database addresses the first obstacle in
periodic-frequent pattern model. In the literature, correlated pattern model was
discussed to address the rare item problem in frequent pattern mining [28]. We
extend this model to find periodic-correlated patterns in a temporal database.
Thus, addressing the second obstacle of periodic-frequent pattern model. The
proposed model considers a pattern as interesting if it satisfies the following two
conditions: (i) if the support of a pattern is close to the support of its individual
items, and (ii) if the periodicity of a pattern is close to the periodicity of its
individual items. The renowned all-confidence [28] measure is used to determine
how close is the support of a pattern with respect to the support of its individ-
ual items. To the best of our knowledge, there exists no measure to determine
how close is the periodicity of a pattern with respect to the periodicity of its
items. So forth, we introduce a new measure, called periodic-all-confidence, to
determine the interestingness of a pattern. The periodic-all-confidence measure
is used to determine how close is the periodicity of a pattern with respect to the
periodicity of its individual items. These two measures facilitate us to achieve the
objective of generating periodic-correlated patterns containing both frequent and
rare items yet without causing frequent items to generate too many uninterest-
ing patterns. A pattern-growth algorithm, called Extended Periodic-Correlated
pattern-growth (EPCP-growth), has also been described to find all periodic-
correlated patterns. Experimental results demonstrate that the proposed model
can discover useful information and EPCP-growth is runtime efficient and highly
scalable as well.

In [38], we have studied the problem of finding periodic-correlated patterns
in transactional databases. In this paper, we first extend this study to temporal
databases and provide theoretical correctness for EPCP-growth algorithm. We
also evaluate the performance of EPCP-growth by conducting extensive experi-
ments on both synthetic and real-world databases.

4 J. N. Venkatesh, R. Uday Kiran, P. Krishna Reddy and Masaru Kitsuregawa

The rest of the paper is organized as follows. Section 2 describes related work
on frequent pattern mining, periodic pattern mining and periodic-frequent pat-
tern mining. Section 3 extends the (full) periodic-frequent pattern model to han-
dle the temporal databases. Section 4 introduces the proposed model of finding
periodic-correlated patterns in a temporal database. Section 5 describes EPCP-
growth algorithm. Section 6 reports on experimental results. Finally, Section 7
concludes the paper with future research directions.

2 Related Work

2.1 Frequent pattern mining

Agrawal et al. [1] introduced the problem of finding frequent patterns in a trans-
actional database. Since then, the problem of finding these patterns has received
a great deal of attention [9, 10, 12, 13, 30, 36, 42]. The basic model used in most
of these studies remained the same. It involves discovering all frequent pat-
terns in a transactional database that satisfy the user-specified minimum sup-
port (minSup) constraint. The usage of single minSup for the entire database
leads to the rare item problem (discussed in previous section). When confronted
with this problem in real-world applications, researchers have tried to address
it using the concept of multiple minSups [16, 21, 26]. In this concept, each item
in the database is specified with a support-constraint known as minimum item
support (minIS). Next, the minSup of a pattern is represented with the lowest
minIS value of its items. Thus, every pattern can satisfy a different minSup
depending upon its items. A major limitation of this concept is that it suffers
from an open problem of determining the items’ minIS values.

Brin et al. [6] introduced correlated pattern mining to address the rare item
problem. The statistical measure, χ2, was used to discover correlated patterns.
Since then, several interestingness measures have been discussed based on the
theories in probability, statistics, or information theory. Examples include all-
confidence, any-confidence, bond [28] and kulc [5]. Each measure has its own
selection bias that justifies the rationale for preferring one pattern over another.
As a result, there exists no universally acceptable best measure to discover cor-
related patterns in any given database. Researchers are making efforts to suggest
an appropriate measure based on user and/or application requirements [28, 32,
34, 37, 39].

Recently, all-confidence is emerging as a popular measure to discover corre-
lated patterns [17, 18, 25, 40, 44, 45]. It is because this measure satisfies both the
anti-monotonic (see Definition 1) and null-invariance (see Definition 2) proper-
ties. The former property says that all non-empty subsets of a correlated pattern
must also be correlated. This property plays a key role in reducing the search
space, which in turn decreases the computational cost of mining the patterns.
In other words, this property makes the correlated pattern mining practicable
in real-world applications. The latter property discloses genuine correlation re-
lationships without being influenced by the object co-absence in a database. In
other words, this property facilitates the user to discover interesting patterns

Discovering Periodic-Frequent Patterns in Transactional Databases 5

involving both frequent and rare items without generating a huge number of
uninteresting patterns. In this paper, we use this measure to address the rare
item problem in support dimension.

Definition 1. (Anti-monotonic property [1]). A measure C is anti-monotone
if and only if whenever a pattern (or an itemset) X violates C, so does any su-
perset of X.

Definition 2. (Null-invariance property [34]). Let us consider a 2 x 2 con-
tingency table (shown in Table 1) as a contingency matrix, M = [f11 f10; f01 f00].
Let an interestingness measure be a matrix operator, O, that maps the matrix
M into a scalar value, k, i.e., OM = k. A binary measure of association is
null-invariant if O(M + C) = O(M), where C = [00; 0k] and k is a positive
constant.

Table 1. A 2 x 2 contingency table for variables A and B

B B

A f11 f10 f1+
A f01 f00 f0+

f+1 f+0 N

Table 1 is an example of a contingency table for rule A => B, where A
and B are the frequent itemsets and N denotes the total number of records. The
number of records in which A and B occurs together is denoted by f11. Similarly,
f10 denotes the number of records in which A doesn’t occur with B, f01 denotes
the number of records in which B doesn’t occurs with A and f00 denotes the
number of records in which neither A nor B occurs.

2.2 Periodic pattern mining

Han et al. [14] introduced (partial) periodic pattern7 model to find temporal
regularities in time series data. The model involves the following two steps:
(i) segment the given time series into multiple period-segments such that the
length of each period-segment is equal to the user-specified period (per), and
(ii) discover all patterns that satisfy the user-specified minSup.

Example 1. Let I = {abcde} be the set of items and S = a{bc}baebacea{ed}d be
a time series data generated from I. If the user-defined period is 3, S is segmented
into four period-segments such that each period-segment contains only 3 events
(or itemsets). That is, PS1 = a{bc}b, PS2 = aeb, PS3 = ace and PS4 = a{ed}d.
Let a ∗ b be a pattern, where ‘?’ denotes a wild (or do not care) character that
can represent any itemset. This pattern appears in the period-segments of PS1

7 The term ‘pattern’ in a time series represents a set of itemsets (or sets of items)

6 J. N. Venkatesh, R. Uday Kiran, P. Krishna Reddy and Masaru Kitsuregawa

and PS2. Therefore, its support is 2. If the user-specified minSup is 2, then
a ? b represents a periodic pattern as its support is no less than minSup. In this
example, braces for singleton itemsets have been eliminated for brevity.

Han et al. [13] have discussed Max-sub-pattern hitset algorithm to find peri-
odic patterns. Chen et al. [8] developed a pattern-growth algorithm, and showed
that it outperforms the Max-sub-pattern hitset algorithm. Aref et al. [4] ex-
tended Han’s model for the incremental mining of partial periodic patterns.
Yang et al. [41] studied the change in periodic behavior of a pattern due to
noise, and enhanced the basic model to discover a class of periodic patterns
known as asynchronous periodic patterns. Zhang et al. [43] enhanced the basic
model of partial periodic patterns to discover periodic patterns in character se-
quences like protein data. Cao et al. [7] discussed a methodology to determine
the period using auto-correlation. The popular adoption and successful indus-
trial application of partial periodic pattern model suffers from the following two
issues:

– Rare item problem: The usage of single minSup for the entire time series
leads to the rare item problem.

– Inability to consider temporal occurrence information of the items
within a series: The basic model of periodic patterns implicitly considers
the data as an evenly spaced time series (i.e., all events within a series occur
at a fixed time interval). This assumption limits the applicability of the
model as events in many real-world time series datasets occur at irregular
time intervals.

Yang et al. [41] used “information gain” as an alternative interestingness
measure to address the problem. Chen et al. [8] extended Liu’s model [26] to
find periodic patterns in time series using multiple minSups. It has to be noted
that these studies have focused on finding periodically occurring sets of itemsets
in time series data, while the proposed study focuses on finding periodically
occurring correlated itemsets in temporal databases.

2.3 Periodic-frequent pattern mining

Ozden et al. [29] enhanced the transactional database by a time attribute that
describes the time when a transaction has appeared, investigated the periodic
behavior of the patterns to discover cyclic association rules. In this study, a
database is fragmented into non-overlapping subsets with respect to time. The
association rules that are appearing in at least a certain number of subsets are
discovered as cyclic association rules. By fragmenting the data and counting the
number of subsets in which a pattern occurs greatly simplifies the design of the
mining algorithm. However, the drawback is that patterns (or association rules)
that span multiple windows cannot be discovered.

Tanbeer et al. [35] discussed a model to find periodic-frequent patterns in
a transactional database. This model eliminates the need of data fragmenta-
tion, and discovers all patterns in a transactional database that satisfy the

Discovering Periodic-Frequent Patterns in Transactional Databases 7

user-specified minSup and maxPer constraints. A pattern-growth algorithm,
called Periodic-Frequent Pattern-growth (PFP-growth), was also discussed to
find these patterns. Uday et al. [19] have discussed a greedy search technique to
efficiently compute the periodicity of a pattern. Anirudh et al. [3] have proposed
an efficient pattern-growth algorithm based on the concept of period summary.
In this concept, the tid-list of the patterns are compressed into partial periodic
summaries, and later aggregated to find periodic-frequent patterns efficiently.
The popular adoption and successful industrial application of periodic-frequent
pattern model suffers from the following two issues: (i) cannot handle databases
in which transactions are occurring at irregular time intervals and (ii) the rare
item problem (both issues are discussed in Section 1). This paper tries to address
both of these issues.

Uday et al. [20] extended Liu’s model [26] to address the rare item problem
in periodic-frequent pattern mining. In this model, every item ij ∈ I in the
database is specified with minIS and maxIP values. The minSup and maxPer
for a pattern X ⊆ I are specified as follows:

minSup(X) = min(minIS(ij)|∀ij ∈ X)

and (1)

maxPer(X) = max(maxIP (ij)|∀ij ∈ X)

where, minSup(X) represents the minimum support of X, maxPer(X) rep-
resents the maximum periodicity of X, minIS(ij) denotes the minimum item
support of an item ij ∈ X and maxIP (ij) denotes the maximum item periodicity
of an item ij ∈ X.

The usage of item-specific minIS and maxIP values facilitates every pattern
to satisfy a different minSup and maxPer depending on its items. However, the
major limitation of this model is the computational cost because the generated
periodic-frequent patterns do not satisfy the anti-monotonic property. Akshat et
al. [33] proposed an alternative periodic-frequent pattern model using the item-
specific minIS and maxIP values. In this model, the minSup and maxPer for
a pattern X are specified as follows:

minSup(X) = max(minIS(ij)|∀ij ∈ X)

and (2)

maxPer(X) = min(maxIP (ij)|∀ij ∈ X)

The periodic-frequent patterns discovered by this model satisfy the anti-monotonic
property. Henceforth, this model is practicable in real-world applications.

An open problem that is common to above two studies [20, 33] is the method-
ology to specify items’ minIS and maxIP values. Uday et al. [20] have described
the following methodology to address this problem:

minIS(ij) = max(γ × S(ij), LS)

and (3)

maxIP (ij) = max(β × S(ij) + Permax, P ermin)

8 J. N. Venkatesh, R. Uday Kiran, P. Krishna Reddy and Masaru Kitsuregawa

where i ∈ I and S(i) is the support of the item i. In Equation 3, LS is the user-
specified lowest minimum item support allowed and γ ∈ [0, 1] is a parameter that
controls how the minIS values for items should be related to their supports. In
Equation 3, Permax and Permin are the user-specified maximum and minimum
periodicities such that Permax ≥ Permin and β ∈ [−1, 0] is a user-specified
constant.

Although Equation 3 facilitates every item to have different minIS and
maxIP values, it suffers from the following limitations: (i) This methodology
requires several input parameters from the user. (ii) Equation 3 determines the
maxIP of an item by taking into account only its support. As a result, this
equation implicitly assumes that all items having the same support will also have
similar periodicities in a temporal database. However, this is seldom the case as
items with similar support can have different periodicities. We have observed
that employing this methodology to specify items’ maxIP values in the tempo-
ral databases, where items can have similar support but different periodicities
can still lead to the rare item problem.

Example 2. Consider a hypothetical transactional database containing 100 trans-
actions. Let ‘x’ and ‘y’ be two items in the database having the same support
(say, sup(x) = sup(y) = 40), but different periodicities (say, per(x) = 11 and
per(y) = 30). Since Equation 3 determines the maxIP values by taking into ac-
count only the support of the items, both ‘x’ and ‘y’ will be assigned a common
maxIP value although their actual periodicity is different from one another.
This can result either in missing interesting patterns or generating too many
patterns. For instance, if we set β = −0.5, Permin = 10 and Permax = 50, then
maxIP (x) = maxIP (y) = 20. In this case, we miss the periodic-frequent pat-
terns containing ‘y’ because per(y) 6≤ maxIP (y). In order to find the periodic-
frequent patterns containing both ‘x’ and ‘y’ items, we have to set a high β value.
When β is set at −0.375, we derive maxIP (x) = maxIP (y) = 35. In this case,
we find periodic-frequent patterns containing ‘y’ because per(y) ≤ maxIP (y).
However, we may also witness too many patterns containing the item ‘x’ because
its maxIP value is three times higher than its periodicity.

Rashid et al. [31] introduced standard deviation as an alternative measure
of maxPrd. Nofong [27] employed mean as an alternative measure to deter-
mine the periodic interestingness of a pattern. Unfortunately, these alternative
interestingness measures are impracticable on very large databases because the
discovered patterns do not satisfy the downward closure property.

Recently, Uday et al. [22, 23] have studied the problem of finding (partial)
periodic patterns in temporal databases. In this paper, we extended the (full)
periodic-frequent pattern model to handle the temporal databases.

3 Periodic-Frequent Pattern Model

In this section, we redefine the periodic-frequent pattern model [35] by taking
into account the temporal databases. Care has been taken such that the nomen-

Discovering Periodic-Frequent Patterns in Transactional Databases 9

clature of redefined model is consistent with the nomenclature of the basic model
of periodic-frequent patterns.

Let I be the set of items. Let X ⊆ I be a pattern (or an itemset). A
pattern containing β number of items is called a β-pattern. A transaction,
tk = (tid, ts, Y) is a tuple, where tid ∈ R represents transactional-identifier,
ts ∈ R represents the timestamp at which the pattern Y has occurred. A tem-
poral database TDB over I is a set of transactions, TDB = {t1, · · · , tm},
m = |TDB|, where |TDB| can be defined as the number of transactions in
TDB. Let tsmin and tsmax denote the minimum and maximum timestamps
in TDB, respectively. For a transaction tk = (tid, ts, Y), k ≥1, such that
X ⊆ Y , it is said that X occurs in tk and such timestamp is denoted as tsX .
Let TSX = {tsXj , · · · , tsXk }, j, k ∈ [1,m] and j ≤ k, be an ordered set of
timestamps where X has occurred in TDB. In this paper, we call this list
of timestamps of X as ts-list of X. The number of transactions containing
X in TDB is defined as the support of X and denoted as sup(X). That is,
sup(X) = |TSX |. Let tsXq and tsXr , j ≤ q < r ≤ k, be the two consecutive

timestamps in TSX . The time difference (or an inter-arrival time) between tsXr
and tsXq is defined as a period of X, say pXa . That is, pXa = tsXr − tsXq . Let

PX = (pX1 , p
X
2 , · · · , pXr) be the set of all periods for pattern X. The period-

icity of X, denoted as per(X) = max(pX1 , p
X
2 , · · · , pXr). The pattern X is a

frequent pattern if sup(X) ≥ minSup, where minSup refers to the user-
specified minimum support constraint. The frequent pattern X is said to be
periodic-frequent if per(X) ≤ maxPer, where maxPer refers to the user-
specified maximum periodicity constraint. The redefined problem definition
of periodic-frequent pattern mining involves discovering all patterns in TDB
that satisfy the user-specified minSup and maxPer constraints. The support of
a pattern can be expressed in percentage of |TDB|. Similarly, the period and
periodicity of a pattern can be expressed in percentage of (tsmax − tsmin).

Example 3. Table 2 shows the temporal database with the set of items I =
{a, b, c, d, e, f, g, h}. The set of items ‘a’ and ‘b,’ i.e., ‘ab’ is a pattern. This
pattern contains only two items. Therefore, this is a 2-pattern. In the first trans-
action, t1 = (101, 1, ab), 101 (from the left hand side) represents the transaction
identifier of the transaction, 1 denotes the timestamp at which the transaction
has occurred and ‘ab’ represents the itemset occurring in this transaction. In
the entire database, this pattern appears at the timestamps of 1, 2, 5, 7 and 10.
Therefore, TSab = {1, 2, 5, 7, 10}. The support of ‘ab,’ i.e., sup(ab) = |TSab| =
|1, 2, 5, 7, 10| = 5. If the user-specified minSup = 5, then ‘ab’ is a frequent pat-
tern because sup(ab) ≥ minSup. The minimum and maximum timestamps of
all transactions in this database are 1 and 12, respectively. Therefore, tsmin = 1
and tsmax = 12. All periods for this pattern are: pab1 = 0 (= 1 − tsmin),
pab2 = 1 (= 2 − 1), pab3 = 3 (= 5 − 2), pab4 = 2 (= 7 − 5), pab5 = 3 (10 − 7) and
pab6 = 2 (= tsmax−10). Therefore, P ab = (0, 1, 3, 2, 3, 2). The periodicity of ‘ab,’
i.e., per(ab) = max(0, 1, 3, 2, 3, 2) = 3. If the user-defined maxPer = 3, then the
frequent pattern ‘ab’ is a periodic-frequent pattern because per(ab) ≤ maxPer.

10 J. N. Venkatesh, R. Uday Kiran, P. Krishna Reddy and Masaru Kitsuregawa

The two key differences between the Tanbeer’s model [35] and the above
model of periodic-frequent patterns are as follows: (i) In the above model, the
first period of a pattern is calculated using tsmin, where as the first period of
a pattern in Tanbeer’s model is calculated with reference to initial time, which
is zero. (ii) Since the Tanbeer model considers input data as a transactional
database with transactions occurring at a fixed time interval, the periodicity of
a pattern is expressed in percentage of |TDB|, whereas in the above model the
periodicity of a pattern is expressed in percentage of (tsmax − tsmin).

Table 2. Running example: A temporal database

tid ts Items

101 1 a, b

102 3 a, b, d

103 3 c, d, g

104 4 c, e, f

105 5 a, b

106 7 h

tid ts Items

107 7 a, b, c, e

108 8 c, d

109 9 c, d

110 10 a, b, e, f

111 11 c, d, g

112 12 a, e, f

The above redefined model of periodic-frequent patterns still suffers from the
rare item problem (refer Example 4). In the next section, we describe periodic-
correlated pattern model to address this problem.

Example 4. Consider the rare items ‘e’ and ‘f ’ in Table 2. If we set a high
minSup and a short maxPer, say minSup = 5 and maxPer = 3, we will miss
the periodic-frequent patterns containing these rare items. In order to discover
the periodic-frequent patterns containing these rare items, we have to set a low
minSup and a long maxPer, say minSup = 2 and maxPer = 6. All periodic-
frequent patterns discovered at these threshold values are shown in the column
titled I in Table 3. It can be observed from this table that setting a low minSup
and a long maxPer has not only resulted in finding ‘ef ’ as a periodic-frequent
pattern, but also resulted in generating the uninteresting patterns ‘ce’ and ‘cd’
as periodic-frequent patterns. The pattern ‘ce’ is uninteresting (with respect
to support dimension), because the rare item ‘e’ is randomly occurring with a
frequent item ‘c’ in very few transactions. The pattern ‘cd’ is uninteresting (with
respect to periodicity dimension), because it contains the frequent items ‘c’ and
‘d’ appearing together at very long inter-arrival times (or periodicity).

4 Periodic-Correlated Pattern Model

To address the rare item problem in periodic-frequent pattern mining, we need a
model that extracts interesting patterns involving both frequent and rare items
yet filtering out uninteresting patterns. After conducting the initial investigation

Discovering Periodic-Frequent Patterns in Transactional Databases 11

Table 3. Periodic-frequent patterns discovered from Table 2. The terms
Pat, sup, allConf, per and perAllConf refer to pattern, support, all-confidence,
periodicity and periodic-all-confidence, respectively. The columns titled I, II and
III represent the periodic-frequent patterns generated using basic model, extending
all-confidence to the basic model and the proposed model, respectively.

Pat sup allConf per perAllConf I II III

a 6 1 3 1 X X X
b 5 1 3 1 X X X
c 6 1 3 1 X X X
d 5 1 5 1 X X X
e 4 1 4 1 X X X
f 3 1 6 1 X X X
ab 5 0.833 3 1 X X X
ef 3 0.75 6 1.5 X X X
ce 2 0.4 5 1.67 X × ×
cd 4 0.8 5 1.67 X X ×

on the nature of interesting patterns found in various databases, we have made
a key observation that most of the interesting periodic patterns discovered in a
database have their support and periodicity close to that of its individual items.
The following example illustrates our observation.

Example 5. In a supermarket, cheap and perishable goods (e.g., bread and but-
ter) are purchased more frequently and periodically than the costly and durable
goods (e.g., bed and pillow). Among all the possible combinations of the above
four items, we normally consider {bread, butter} and {bed, pillow} as interesting
patterns, because only these two patterns generally have support and periodicity
close to the support and periodicity of its individual items. All other uninterest-
ing patterns, {bread, bed}, {bread, pillow}, {butter, bed} and {butter, pillow},
generally have support and periodicity relatively far away from the support and
periodicity of its individual items as compared against the above two patterns.

Henceforth, in this paper we consider a pattern as interesting if its support
and periodicity are close to the support and periodicity of its individual items. In
this context, we need two measures to determine the interestingness of a pattern
with respect to both support and periodicity dimensions.

In the literature, researchers have discussed several measures to address
the rare item problem in support dimension [34, 39]. In this paper, we use all-
confidence to address the rare item problem in support dimension. (The reason
for choosing this measure for finding periodic-correlated patterns has been de-
scribed in Section 2).

Continuing with the model of periodic-frequent patterns (discussed in the
previous section), the proposed model of periodic-correlated patterns is as fol-
lows.

12 J. N. Venkatesh, R. Uday Kiran, P. Krishna Reddy and Masaru Kitsuregawa

Definition 3. (All-confidence of X) The all-confidence of X, denoted as
allConf(X), is the ratio of support of X to the maximal support of an item

ij ∈ X. That is, allConf(X) = sup(X)
max(sup(ij)|∀ij∈X) .

For a pattern X, allConf(X) ∈ (0, 1]. As per the all-confidence measure, a
pattern is interesting in support dimension if its support is close to the support of
all of its items. The parameter minAllConf indicates the user-specified minimum
all-confidence threshold value. Based on minSup and minAllConf thresholds, all
the interesting patterns involving rare items in support dimension are extracted.

Definition 4. (Correlated pattern X) The pattern X is said to be correlated
if sup(X) ≥ minSup and allConf(X) ≥ minAllConf . The terms minSup and
minAllConf, respectively represent the user-specified minimum support and min-
imum all-confidence.

Example 6. In Table 2, the support of the patterns a, b and ab are 6, 5 and 5, re-

spectively. Therefore, the all-confidence of ab, i.e., allConf(ab) = sup(ab)
max(sup(a),sup(b)) =

5
max(6,5) = 0.833. If the user-specified minSup = 2 and minAllConf = 0.6,

then ab is a correlated pattern because sup(ab) ≥ minSup and allConf(ab) ≥
minAllConf .

The usage of all-confidence alone is insufficient to completely address the
rare item problem. The reason is that this measure does not take into account
the periodicity dimension of a pattern.

Example 7. The column titled II in Table 3 shows the periodic-frequent pat-
terns discovered when all-confidence is used along with support and periodicity
measures. The minSup, minAllConf and maxPer values used to find
these patterns are 2, 0.6 and 6, respectively. It can be observed from
the discovered periodic-frequent patterns that though all-confidence is able to
prune the uninteresting pattern ‘ce,’ it has failed to prune another uninteresting
pattern ‘cd’ from the list of periodic-frequent patterns generated by the basic
model. Henceforth, the rare item problem has to be addressed with respect to
both support and periodicity dimensions.

As there exists no measure in the literature that determines the interesting-
ness of a pattern with respect to the periodicities of all of its items, we propose
a new measure, periodic-all-confidence , to extract interesting patterns in pe-
riodicity dimension involving rare items, which is defined as follows.

Definition 5. (Periodic-all-confidence of X) The periodic-all-confidence of
X, denoted as perAllConf(X), is the ratio of periodicity of X to the minimal

periodicity of an item ij ∈ X. That is, perAllConf(X) = per(X)
min(per(ij)|∀ij∈X) .

Example 8. In Table 2, the periodicity of the patterns a, b and ab are 3, 3 and 3,
respectively. Therefore, the periodic-all-confidence of ab, i.e., perAllConf(ab) =

per(ab)
min(per(a),per(b)) = 3

min(3,3) = 1.

Discovering Periodic-Frequent Patterns in Transactional Databases 13

For a pattern X, perConf(X) ∈ [1,∞). As per the periodic-all-confidence
measure, a pattern is interesting in periodicity dimension, if the periodicity of
a pattern is close to the periodicity of all of its items. The parameter max-
PerAllConf indicates the maximum periodic-all-confidence threshold set by the
user. Based on maxPer and maxPerAllConf thresholds, the interesting patterns
involving rare items in periodicity dimension can be extracted.

Henceforth, the periodic-correlated pattern is defined as follows.

Definition 6. (Periodic-correlated pattern X) The pattern X is said to be
periodic-correlated if sup(X) ≥ minSup, allConf(X) ≥ minAllConf , per(X) ≤
maxPer and perAllConf(X) ≤ maxPerAllConf . The terms minSup, minAll-
Conf, maxPer and maxPerAllConf, respectively represent the user-specified min-
imum support, minimum all-confidence, maximum periodicity and maximum
periodic-all-confidence.

Example 9. If the user-specified minSup = 2, minAllConf = 0.6, maxPer = 6
and maxPerAllConf = 1.5, then the pattern ‘ab’ is said to be a periodic-
correlated pattern, because sup(ab) ≥ minSup, allConf(ab) ≥ minAllConf ,
per(ab) ≤ maxPer and perAllConf(ab) ≤ maxPerAllConf .

Example 10. The column titled III in Table 3 shows the complete set of periodic-
correlated patterns discovered from Table 2. It can be observed that the pro-
posed model has not only discovered the periodic-correlated patterns containing
rare items but also pruned the uninteresting patterns ‘cd’ and ‘ce.’ This clearly
demonstrates that the proposed model discovers periodic-correlated patterns con-
taining rare items without generating too many uninteresting patterns.

The discovered periodic-correlated patterns satisfy the anti-monotonic prop-
erty (see Lemma 1). The correctness is straightforward to prove from Properties
1 and 2.

Property 1. If X ⊂ Y , then TSX ⊇ TSY . Therefore, sup(X) ≥ sup(Y) and
allConf(X) ≥ allConf(Y).

Property 2. If X ⊂ Y , then per(X) ≤ per(Y). Therefore, perAllConf(X) ≤
perAllConf(Y) as per(X)

min(per(ij)∀ij∈X) ≤
per(Y)

min(per(ij)∀ij∈Y) .

Lemma 1. If X ⊂ Y , then TSX ⊇ TSY . Therefore, sup(X) ≥ sup(Y), allConf(X) ≥
allConf(Y), per(X) ≤ per(Y) and perAllConf(X) ≤ perAll- Conf(Y).

Definition 7. Problem Definition: Given the temporal database (TDB) and
the user-specified minimum support (minSup), minimum all-confidence (minAll-
Conf), maximum periodicity (maxPer) and maximum periodic-all-confidence (max-
PerAllConf), the problem of finding periodic-correlated patterns involves dis-
covering all patterns that satisfy the minSup, minAllConf, maxPer and max-
PerAllConf thresholds. The support of a pattern can be expressed in percent-
age of |TDB|. The periodicity of a pattern can be expressed in percentage of
(tsmax − tsmin).

14 J. N. Venkatesh, R. Uday Kiran, P. Krishna Reddy and Masaru Kitsuregawa

5 Proposed Algorithm

Tanbeer et al. [35] have proposed Periodic-Frequent pattern-growth (PF-growth)
to discover periodic-frequent patterns using support and periodicity measures.
Unfortunately, this algorithm cannot be directly used for finding the periodic-
correlated patterns with our model. The reason is that PF-growth does not
determine the interestingness of a pattern using all-confidence and periodic-
all-confidence measures. In this paper, we extend PF-growth to determine the
interestingness of a pattern using these two measures. We call the proposed al-
gorithm as Extended Periodic-Correlated pattern-growth (EPCP-growth). The
proposed algorithm involves two steps: (i) construction of Extended Periodic-
Correlated pattern-tree (EPCP-tree), (ii) recursively mining EPCP-tree to dis-
cover periodic-correlated patterns. Before we describe these two steps, we explain
the structure of EPCP-tree.

5.1 Structure of EPCP-tree

The structure of EPCP-tree consists of a prefix-tree and a EPCP-list. The EPCP-
list consists of three fields: item name (i), support (s) and periodicity (p).
The structure of prefix-tree in EPCP-tree is similar to that of the prefix-tree
in FP-tree [15]. However, to obtain both support and periodicity of the pat-
terns, the nodes in EPCP-tree explicitly maintain the occurrence information
for each transaction by maintaining an occurrence timestamp list, called ts-list,
only at the tail node of every transaction. Complete details on prefix-tree are
available in [35].

One can assume that the structure of the prefix-tree in an EPCP-tree may not
be memory efficient since it explicitly maintains timestamps of each transaction.
However, it has been argued that such a tree can achieve memory efficiency by
keeping transaction information only at the tail nodes and avoiding the support
count field at each node [35].

5.2 Construction of EPCP-tree

Since the periodic-correlated patterns generated by the proposed model sat-
isfy the anti-monotonic property, periodic-correlated items (or 1-patterns) play
a key role in efficient discovery of higher order periodic-correlated patterns.
These items are discovered by populating the EPCP-list (lines 1 to 18 in Al-
gorithm 1). Figures 1 (a), (b), (c), (d) and (e) show the steps involved in
finding periodic-correlated items from EPCP-list. The user-specified minSup,
minAllConf , maxPer and maxPerAllConf values are 2, 0.6, 6 and 1.5, re-
spectively.

After finding periodic-correlated items, prefix-tree is constructed by perform-
ing another scan on the database (lines 19 to 23 in Algorithm 1). A EPCP-tree
is constructed as follows. First, create the root node of the tree and labeled it
as “null.” Scan the database a second time. The items in each transaction are
processed in EPCP order (i.e., sorted according to descending support count),

Discovering Periodic-Frequent Patterns in Transactional Databases 15

Algorithm 1 Construction of EPCP-tree (TDB: Temporal database, minSup:
minimum support, minAllConf : minimum all-confidence, maxPer: maximum
periodicity, maxPerAllConf : maximum periodic-all-confidence)

1: Let idl be a temporary array that records the ts of the last appearance of each
item in the TDB. Let t = {tid, tscur, X} denote the current transaction with
tid, tscur and X representing the transanction identifier, timestamp of the current
transaction and pattern, respectively.

2: for each transaction t ∈ TDB do
3: if an item i occurs for the first time then
4: Insert i into the EPCP-list with supi = 1, peri = tsmin − tscur and idil = 1.
5: else
6: supi = supi + 1.
7: if (tscur − idil) > peri then
8: peri = tscur − idil.
9: end if

10: end if
11: end for
12: for each item i in EPCP-list do
13: if (tsmax − idil) > peri then
14: peri = tsmax − idil.
15: end if
16: end for
17: Remove items from the EPCP-list that do not satisfy minSup and maxPer.
18: Sort the remaining items in EPCP-list in descending order of their support. Let

this sorted list of items be EPCP .
19: Create a root node in EPCP-tree, T , and label it “null.”
20: for each transaction t ∈ TDB do
21: Sort the items in t in EPCP order. Let this list of sorted periodic-frequent items

in t be [p|P], where p is the first item and P is the remaining list.
22: Call insert tree([p|P], tscur, T).
23: end for

and a branch is created for each transaction such that only the tail-nodes record
the timestamps of transactions. For example, the scan of the first transaction,
“101 : 1 : ab,” which contains two items (a, b in EPCP order), leads to the con-
struction of the first branch of the tree with two nodes, 〈a〉 and 〈b : 1〉, where a
is linked as a child of the root and b : 1 is linked to a. The EPCP-tree generated
after scanning the first transaction is shown in Figure 2 (a). The scan on the
second transaction, “102 : 3 : abd,” containing the items a, b and d in CI order,
would result in a branch where a is linked to the root, b is linked to a and d : 3
is linked to b. However, this branch would share a common prefix, ab, with the
existing path for first transaction. Therefore, we create a single new node 〈d : 3〉,
and link d : 3 to b as shown in Figure 2 (b). A similar process is repeated for the
remaining transactions and the tree is updated accordingly. Figure 2(c) shows
the EPCP-tree constructed after scanning the entire database. In EPCP-tree,
an item header table is built so that each item points to its occurrences in the

16 J. N. Venkatesh, R. Uday Kiran, P. Krishna Reddy and Masaru Kitsuregawa

tree via a chain of node-links, to facilitate tree traversal. For simplicity, we do
not show these node-links in trees, however, they are maintained as in FP-tree.

p

1

1

1

1 1

1

d 1 3 3

a

b

2

2

2

2 3

3

d 5 5 11

a

b

6

5

3

3 10

12

c

g

6

2

3

8 11

11

a 6 3

g 2 8

a 6 3

e

f

4

3

4

6

(a) (b) (c) (d) (e)

a

b

idl idl idlsi psi psi psipsi

d 5 5

b 5 3

c 6 3

e 4

3

4

6 12

12

f

h 1 7 7

e

f

4

3

4

6

h 1 7

d 5 5

b 5 3

c 6 3

Fig. 1. Construction of EPCP-list for Table 2. (a) After scanning the first transaction
(b) After scanning the second transaction (c) After scanning every transaction (d)
Updated EPCP-list (e) Final EPCP-list with sorted list of periodic-correlated items

{}null

a

b:1

{}null

a

b:1

d:3

{}null

a

b:1,5

d:2

e

f:12

e

f:4

c

d:3,8,

 9,11

(b)(a)

i s p

a 6 3

e

f

4

3

4

6

(c)

d 5 5

b 5 3

c 6 3

c

b

e:7

e

f:10

Fig. 2. Construction of EPCP-tree for Table 2. (a) After scanning first transaction (b)
After scanning second transaction (c)After scanning every transaction

The EPCP-tree maintains the complete information of all periodic-correlated
patterns in a database. The correctness is based on Property 3 and shown in Lem-
mas 2 and 3. For each transaction t ∈ TDB, EPCP(t) is the set of all candidate
items in t, i.e., EPCP (t) = item(t) ∩ EPCP , and is called the candidate item
projection of t.

Property 3. An EPCP-tree maintains a complete set of candidate item projec-
tions for each transaction in a database only once.

Lemma 2. Given a TDB and user-defined minSup, minAllConf , maxPer,
and maxPerAllConf thresholds, the complete set of all periodic-correlated item
projections of all transactions in the TDB can be derived from the EPCP-tree.

Discovering Periodic-Frequent Patterns in Transactional Databases 17

Algorithm 2 Insert tree([p|P], tscur, T)

1: if T does not have a child N satisfying p.itemName = N.itemName then
2: Create a new node N and set its parent as T . Let its node-link be linked to the

nodes with the same item via the node-link structure.
3: end if
4: Remove p from P .
5: if P is non-empty then
6: Call Insert tree([P], tscur, N)
7: else
8: Add tscur to T (i.e., leaf node).
9: end if

Proof. Based on Property 3, each transaction t ∈ TDB is mapped to only one
path in the tree, and any path from the root up to a tail node maintains the
complete projection for exactly n transactions (where n is the total number of
entries in the ts-list of the tail node).

Lemma 3. The size of the EPCP-tree (without the root node) on a TDB for
user-defined minSup, minAllConf , maxPer, and maxPerAllConf thresholds,
is bounded by

∑
t∈TDB |EPCP (t)|.

Proof. According to the EPCP-tree construction process and Lemma 2, each
transaction t contributes at most one path of size |EPCP (t)| to an EPCP-tree.
Therefore, the total size contribution of all transactions can be

∑
t∈TDB |EPCP (t)|

at best. However, since there are usually many common prefix patterns among
the transactions, the size of an EPCP-tree is normally much smaller than∑

t∈TDB |EPCP (t)|.

Before we discuss the mining of EPCP-tree, we explore the following impor-
tant property and lemma of an EPCP-tree.

Property 4. A tail node in an EPCP-tree maintains the occurrence information
for all the nodes in the path (from the tail node to the root) at least in the
transactions in its ts-list.

Lemma 4. Let Z = {a1, a2, · · · , an} be a path in an EPCP-tree where node an is
the tail node carrying the ts-list of the path. If the ts-list is pushed-up to node an1,
then an1 maintains the occurrence information of the path Z ′ = {a1, a2, · · · , an1}
for the same set of transactions in the ts-list without any loss.

Proof. Based on Property 4, an maintains the occurrence information of path
Z ′ at least in the transactions in its ts-list. Therefore, the same ts-list at node
an1 maintains the same transaction information for Z ′ without any loss.

5.3 Mining EPCP-tree

Algorithm 3 describes the procedure for mining periodic-correlated patterns from
EPCP-tree. The EPCP-tree is mined by calling EPCP-growth as (EPCP-tree,

18 J. N. Venkatesh, R. Uday Kiran, P. Krishna Reddy and Masaru Kitsuregawa

null). This algorithm resembles FP-growth. However, the key difference is that
once the pattern-growth is achieved for a suffix 1-pattern (or item), it is com-
pletely pruned from the EPCP-tree by pushing its ts-list to respective parent
nodes.

The working of this algorithm is as follows. We proceed to construct the
prefix tree for each candidate item in the EPCP-list, starting from the bottom
most item, say i. To construct the prefix-tree for i, the prefix sub-paths of node
i are accumulated in a tree-structure, PTi. Since i is the bottom-most item in
the EPCP-list, each node labeled i in the EPCP-tree must be a tail node. While
constructing PTi, based on Property 4, we map the ts-list of every node of i to
all items in the respective path explicitly in the temporary array (one for each
item). This temporary array facilitates the calculation of sup, allConf , per,
perAllConf of each item in PTi (line 2 in Algorithm 3). If an item j in PTi has
sup ≥ minSup, allConf ≥ minAllConf , per ≤ maxPer and perAllConf ≤
maxPerAllConf , then we construct its conditional tree and mine it recursively
to discover the recurring patterns (lines 3 to 9 in Algorithm 3). Moreover, to
enable the construction of the prefix-tree for the next item in the EPCP-list,
based on Lemma 4, the ts-lists are pushed-up to the respective parent nodes in
the original EPCP-tree and in PTi as well. All nodes of i in the original EPCP-
tree and is entry in the EPCP-list are deleted thereafter (line 10 in Algorithm
3).

Using Properties 3 and 4, the conditional tree CTi for PTi is constructed
by removing all those items from PTi that have sup ≤ minSup, or allConf ≤
minAllConf , or per ≥ maxPer or perAllConf ≥ maxPerAllConf . If the
deleted node is a tail node, its ts-list is pushed-up to its parent node. The contents
of the temporary array for the bottom item j in the EPCP-list of CTi represent
TSij (i.e., the set of all timestamps where items i and j have appeared together
in the database). The same process of creating a prefix-tree and its corresponding
conditional tree is repeated for further extensions of “ij”. The whole process of
mining for each item is repeated until EPCP-list 6= ∅.

Table 4 summarizes the working of this algorithm. First, we consider item ‘f ,’
which is the bottom-most item in the EPCP-list, as a suffix pattern. This item
appears in three branches of the EPCP-tree (refer Figure 2(c)). The paths formed
by these branches are {cef : 4}, {abef : 10} and {aef : 12} (format of these
branches is {nodes : timestamps}). Therefore, considering ‘f ’ as a suffix item,
its corresponding three prefix paths are {ce : 4}, {abe : 10} and {ae : 12}, which
form its conditional pattern base (refer Figure 3(a)). Its conditional EPCP-tree
contains only a single path, 〈e : 4, 10, 12〉; ‘a,’ ‘b’ and ‘c’ are not included because
their all-confidence and periodic-all-confidence do not satisfy the minAllConf
and maxPerAllConf respectively. Figure 3(b) shows the conditional EPCP-
tree of ‘f .’ The single path generates the pattern {ef : 3, 0.75, 6, 1.5} (format
is {pattern: support, all-confidence, periodicity, periodic-all-confidence}). The
same process of creating prefix-tree and its corresponding conditional tree is
repeated for further extensions of ‘ef .’ Next, ‘f ’ is pruned from the original

Discovering Periodic-Frequent Patterns in Transactional Databases 19

EPCP-tree and its ts-lists are pushed to its parent nodes, as shown in Figure
3(c). All the above processes are once again repeated until EPCP-list 6= ∅.

Algorithm 3 EPCP-growth(Tree, α)

1: for each ai in the header of Tree do
2: Generate pattern β = ai ∪ α. Construct an array TSβ , which represents the

set of timestamps at which β has appeared in TDB. Next, compute from
TSβ , sup(β), allConf(β), per(β) and perAllConf(β) and compare them with
minSup, minAllConf , maxPer and maxPerAllConf , respectively.

3: if sup(β) ≥ minSup, allConf(β) ≥ minAllConf , per(β) ≤ maxPer and
perAllConf(β) ≤ maxPerAllConf then

4: Output β as a periodic-correlated pattern as {β: sup, allConf, per, perAll-
Conf}.

5: Traverse Tree using the node-links of β, and construct β’s conditional pattern
base and β’s conditional EPCP-tree Treeβ .

6: if Treeβ 6= ∅ then
7: call EPCP-growth(Treeβ , β);
8: end if
9: end if

10: Remove ai from the Tree and push ai’s ts-list to its parent nodes.
11: end for

Table 4. Mining EPCP-tree by creating conditional (sub -) pattern bases

Item sup per Cond. Pattern Base Cond. EPCP-tree Per. Freq. Patterns

f 3 6 {ce : 4}, {abe : 10}, 〈e : 4, 10, 12〉 {ef : 3, 0.75, 6, 1.5}
{ae : 12}

e 4 4 {c : 4}, {abc : 7}, − −
{ab : 10}, {a : 12}

d 5 5 {ab : 3}, {c : 3, 8, 9, 11} − −
b 5 3 {a : 1, 2, 5, 10}, {ac : 7} 〈a : 1, 2, 5, 7, 10〉 {ab: 5, 0.833, 3, 1}
c 6 3 {a : 7} − −

6 Experimental Results

In this section, we show that the proposed model discovers interesting patterns
pertaining to both frequent and rare items by pruning uninteresting patterns.
We also evaluate the proposed model against the existing models of periodic-
correlated patterns [20, 33, 35].

The algorithms, PF-growth, MCPF-growth, MaxCPF-growth and EPCP-growth
are written in C++ and run with Fedora 22 on a 2.66 GHz machine with 8 GB of

20 J. N. Venkatesh, R. Uday Kiran, P. Krishna Reddy and Masaru Kitsuregawa

{}null

a

b

e:10

e:12

c

e:4

(a)

i s p

e

a

b

3

2

1

6

10

10

{}null

e:4,

 10,

 12

i s p

e 3 6

(b)

i s p

a 6 3

e 4 4

(c)

c 1 8

{}null

a

b:1,5

d:3

e:12 e:4

c

d:3,8,

 9,11

c

b

e:7

e:10

d 5 5

b 5 3

c 6 3

Fig. 3. Mining of EPCP-tree for Table 2. (a) Prefix-tree of suffix item ‘f,’ i.e., PTf (b)
Conditional tree of suffix item ‘f,’ i.e., CTf (c) EPCP-tree after pruning item ‘f.’

memory. We have conducted experiments using both synthetic (T10I4D100K)
and real-world (Retail and FAA-Accidents) databases. The T10I4D100K data-
base is generated using the IBM data generator [1]. This database contains 878
items with 100,000 transactions. The Retail database contains the market bas-
ket data from a Belgian retail store. This database contains 16,471 items with
88,162 transactions. The FAA-Accidents database is constructed from the ac-
cidents data recorded by FAA from 1-January-1978 to 31-December-2014. This
database contains 9,290 items with 98,864 transactions.

6.1 Patterns Generated by the Proposed Model

Figure 4 (a)-(c) shows the number of patterns generated at different minAll-
Conf and maxPerAllConf values in T10I4D100K, Retail and FAA-Accidents
databases. The minSup and maxPer are set at 0.01% and 40%. The follow-
ing observations can be drawn: (i) The increase in minAllConf results in de-
crease of periodic-correlated patterns. The reason is that as minAllConf in-
creases, the support threshold value of a pattern increases. (ii) The increase in
maxPerAllConf results in increase of patterns. The reason is that as maxPer-
AllConf increases, the periodicity threshold value of a pattern increases.

 1000

 3000

 5000

 7000

 9000

 11000

P
a
tt

e
r
n

s

P
a
tt

e
r
n

s

maxPerAllConf (%) maxPerAllConf (%)

P
a
tt

e
r
n

s

maxPerAllConf (%)

minAllConf=0.01

minAllConf=0.06

minAllConf=0.11

(b) Retail (c) FAA-Accidents(a) T10I4D100K

minAllConf=0.01

minAllConf=0.06

minAllConf=0.11

minAllConf=0.01

minAllConf=0.06

minAllConf=0.11

 2 4 6 8 10

 6000

 8000

 10000

 12000

 14000

 4000

 5000

 6000

 7000

 0

 4500

 5500

 6500

 2 4 6 8 10 2 4 6 8 10

Fig. 4. Periodic-correlated patterns generated at different maxAllConf and maxPer-
AllConf values

Discovering Periodic-Frequent Patterns in Transactional Databases 21

Figure 5 show the runtime requirements of EPCP-growth at different max-
PerAllConf and minAllConf values in T10I4D100K, Retail and FAA-Accidents
databases. The following observations can be drawn: (i) The increase inminAllConf
decreases the runtime of EPCP-growth. The reason is that increase inminAllConf
decreases the number of periodic-correlated patterns. (ii) The increase in max-
PerAllConf results in increase of runtime of EPCP-growth.

R
u
n
ti

m
e
 (

se
c
)

R
u
n
ti

m
e
 (

se
c
)

R
u
n
ti

m
e
 (

se
c
)

 30

 34

 38

 42

 46

 48

maxPerAllConf (%)

(a) T10I4D100K

 2 4 6 8 10

minAllConf=0.01

minAllConf=0.06

minAllConf=0.11

minAllConf=0.01

minAllConf=0.06

minAllConf=0.11

 52

 54

 56

 58

 60

 61

 30

 31

 32

 33

 34

 34.5

maxPerAllConf (%) maxPerAllConf (%)

(b) Retail (c) FAA-Accidents

 2 4 6 8 10 2 4 6 8 10

minAllConf=0.01

minAllConf=0.06

minAllConf=0.11

Fig. 5. Runtime requirements of EPCP-growth at different maxAllConf and maxPer-
AllConf values

Table 5 shows some of the interesting patterns discovered in FAA database.
TheminSup,minAllConf ,maxPer andmaxPerAllConf values used are 0.01%,
0.01, 40% and 9, respectively. It can be observed from their support values that
our model has discovered interesting patterns involving both frequent and rare
items effectively. Please note that the periodicity (per) is expressed in days.

Table 5. Some of the interesting patterns discovered in FAA-Accidents database

S. No. Patterns sup allConf per perAllConf

1 {Pilot Not Certificated, Destroyed} 13 0.06 4756 7.77

2 {Student, Substantial} 136 0.02 893 29.77

3 {Boeing, Substantial} 214 0.02 214 26.35

4 {Private-Pilot, Cessna, CE-172, Minor} 1,661 0.03 117 23.4

5 {General Operating Rules, Commercial 10,399 0.15 32 6.4
Pilot, Minor}

The first pattern in this table reveals interesting information that 13 aircrafts
have been ‘destroyed’ when piloted by a non-certified pilot. The periodicity of
this event is 4756 days (≈13 years). The second pattern indicates 136 aircrafts
driven by student pilots have suffered substantial damages at least once in ev-
ery ≈2.5 years. The third pattern indicates that Boeing aircrafts have suffered
substantial damages at least once in every ≈7 months. The fourth pattern re-
veals the information that Cessna airlines CE-172 driven by private pilots have
encountered minor damages at least once in every ≈4 months. The last pattern
reveals the information that at least once in every 32 days, an aircraft driven

22 J. N. Venkatesh, R. Uday Kiran, P. Krishna Reddy and Masaru Kitsuregawa

by commercial pilots has witnessed minor damages during general operating
rules. It can be observed that the first three patterns have low support and high
periodicity. These patterns are often difficult to find with existing approaches
due to combinatorial explosion. Thus, the proposed model can efficiently discover
useful information pertaining to both frequent and rare items.

6.2 Comparison of Proposed Model against the Existing Models

For MCPF-growth and MaxCPF-growth, we use Equation 3 to specify items’
minIS and maxIP values. Setting the α and β values in this equation has
been a non-trivial task as the patterns discovered by these algorithms can be
different from the patterns discovered by EPCP-growth. After conducting sev-
eral experiments, we have empirically set the following values for MCPF-growth
and MaxCPF-growth algorithms, such that both algorithms discover almost all
periodic-frequent patterns discovered by EPCP-growth.

Figure 6 shows the number of periodic-frequent patterns generated at differ-
ent minSup values (Y -axis is plotted on logscale). For EPCP-growth, we have
fixed minAllConf = 0.01, maxPer = 40% and maxPerAllConf = 9 and vary
minSup values. For MCPF-growth and MaxCPF-growth, we have set γ = 0.01,
LS = minSup, β = −0.4, Permax = 40% and Permin = 10%. For PF-growth,
we have set maxPer = 40% and vary minSup values. It can be observed that the
proposed model has generated less of number of patterns because all-confidence
has pruned the uninteresting patterns having support much less than the support
of individual items.

 0.01 0.03 0.05 0.07 0.09

P
a
tt

e
r
n

s

 1000

 10000

 100000

 1e+06

P
a
tt

e
r
n

s

 1000

 10000

 100000

 1e+06

P
a
tt

e
rn

s

 1000

 10000

 100000

 1e+06

 1e+07

MCPF

PF MaxCPF

EPCP MCPF

PF MaxCPF

EPCPMCPF

PF MaxCPF

EPCP

 0.01 0.03 0.05 0.07 0.09 0.01 0.03 0.05 0.07 0.09

(b) Retail

minSup%

(a) T10I4D100K

minSup%

(c) FAA-Accidents

minSup%

Fig. 6. Periodic-Correlated patterns generated at different minSup values

Figure 7 shows the number of periodic-frequent patterns generated at differ-
ent maxPer values (Y -axis is plotted on logscale). For EPCP-growth, we have
fixed minSup = 0.01%, minAllConf = 0.01 and maxPerAllConf = 9 and vary
maxPer values. For MCPF-growth and MaxCPF-growth, we have set γ = 0.01,
LS = 0.01%, β = −0.4, Permax = maxPer and Permin = 10%. For PF-growth,
we have set minSup = 0.01% and vary maxPer values. It can be observed that
the proposed model has generated less number of patterns at different maxPer
values. It is because periodic all-confidence has pruned out those uninteresting

Discovering Periodic-Frequent Patterns in Transactional Databases 23

patterns whose periodicity was much higher than the periodicity of its individual
items.

MCPF

PF

P
a
tt

e
rn

s

 20 25 30 35 40

P
a
tt

e
rn

s

MCPF

PF MaxCPF

EPCP

P
a
tt

e
r
n
s

 1000

 10000

 100000

 1e+06

(a) T10I4D100K

maxPer%

MaxCPF

EPCP MCPF

PF MaxCPF

EPCP

 1000

 10000

 100000

 1e+06

 1000

 10000

 100000

 1e+06

 1e+07

 20 25 30 35 40 20 25 30 35 40

(b) Retail

maxPer%

(c) FAA-Accidents

maxPer%

Fig. 7. Periodic-Correlated patterns generated at different maxPer values

From Figures 6 and 7, it can be observed that the proposed model has gener-
ated lesser number of periodic-frequent patterns than the other models, because
the existing models have suffered from the rare item problem.

Figures 8 shows the runtime taken by various models at different minSup val-
ues (Y -axis is plotted on logscale). It can be observed that, in all the databases
the proposed model takes lesser runtime to find periodic-frequent patterns than
PF-growth and MCPF-growth. But the proposed model takes slightly more run-
time than MaxCPF-growth. So the proposed model is not adding any significant
overhead in mining periodic-correlated patterns.

MCPF

PF MaxCPF

EPCP MCPF

PF MaxCPF

EPCP
MCPF

PF MaxCPF

EPCP

 10

100

 1000

R
u

n
ti

m
e
 (

se
c
)

 10

100

 1000

R
u

n
ti

m
e
 (

se
c
)

 10

100

 1000

R
u

n
ti

m
e
 (

se
c
)

 0.01 0.03 0.05 0.07 0.09

(b) Retail

minSup%

 0.01 0.03 0.05 0.07 0.09

(a) T10I4D100K

minSup%

 0.01 0.03 0.05 0.07 0.09

(c) FAA-Accidents

minSup%

Fig. 8. Runtime requirements of various models at different minSup values

Figure 9 shows the runtime taken by various models at different maxPer
values (Y -axis is plotted on logscale). Similar observations to that of varying
minSup can be drawn.

6.3 Scalability

We studied the scalability of EPCP-growth on execution time by varying the
number of transactions in a database. We used Kosarak, T10I4D1000K and
T25I6D1000K datasets for this experiment. We divided the database into five

24 J. N. Venkatesh, R. Uday Kiran, P. Krishna Reddy and Masaru Kitsuregawa

MCPF

MaxCPF

EPCP

PF MCPF

MaxCPF

EPCPPF

MCPF

MaxCPF

EPCPPF

 20 25 30 35 40

(a) T10I4D100K

maxPer%
 20 25 30 35 40 20 25 30 35 40

(b) Retail

maxPer%

(c) FAA-Accidents

maxPer%

 10

100

 1000

R
u

n
ti

m
e
 (

se
c
)

 10

100

 1000

R
u

n
ti

m
e
 (

se
c
)

 10

100

 1000

R
u

n
ti

m
e
 (

se
c
)

Fig. 9. Runtime requirements of various models at different maxPer values

equal parts, i.e., 20% transactions in each part. Then we investigated the perfor-
mance of EPCP-growth by accumulating each part with previous parts and run-
ning EPCP-growth each time. Figure 10 (a), (b) and (c) show the graph of run-
time requirements of EPCP-growth in Kosarak, T10I4D1000K and T25I6D1000K
databases, respectively. It is clear from the graphs that as the database size in-
creases, overall tree construction and mining time increase. However, the figure
shows stable performance of about linear increase in runtime with respect to the
database size.

Figure 11 (a), (b) and (c) show the graph of memory requirements of EPCP-
growth in Kosarak, T10I4D1000K and T25I6D1000K databases, respectively.
Similar observations to that of runtime requirements can be drawn. Therefore,
it can be observed from the scalability test that EPCP-growth scales linearly
with the increase in database size.

(a) Kosarak

Database (%)

R
u
n
ti

m
e
 (

se
c
)

(b) T10I4D1000K

Database (%)

R
u
n
ti

m
e
 (

se
c
)

(c) T25I6D1000K

Database (%)

R
u
n
ti

m
e
 (

se
c
)

 100

 200

 300

 400

 500

 600
allConf=0.1, minSup=0.1%,

maxPerConf=5, maxPer=40%
allConf=0.1, minSup=0.05%,

maxPerConf=5, maxPer=40%

allConf=0.1, minSup=0.01%,

maxPerConf=5, maxPer=40%

 200

 600

 1000

 1400

 1800

 2000

 160

 200

 240

280

 320

 340

 120
 20 40 60 80 100 20 40 60 80 100 20 40 60 80 100

Fig. 10. Runtime requirements of EPCP-growth in various databases

7 Conclusions and Future Work

This paper introduces a model to address the rare item problem in both sup-
port and periodicity dimensions. A new interestingness measure, periodic-all-
confidence, is proposed to address the problem in periodicity dimension. An
efficient pattern-growth algorithm has been proposed to discover all periodic-
correlated patterns in a database. Experimental results demonstrate that the

Discovering Periodic-Frequent Patterns in Transactional Databases 25

 10

 30

 50

 70

 90

 20 40 60 80 100
 100

 200

 300

 400

 500

 550
allConf=0.1, minSup=0.1%,

maxPerConf=5, maxPer=40%

(a) Kosarak

Database (%)

(b) T10I4D1000K

Database (%)

M
em

o
ry

 (
M

B
)

(c) T25I6D1000K

Database (%)

allConf=0.1, minSup=0.05%,

maxPerConf=5, maxPer=40%

allConf=0.1, minSup=0.01%,

maxPerConf=5, maxPer=40%

M
em

o
ry

 (
M

B
)

M
em

o
ry

 (
M

B
)

 20 40 60 80 100
 10

 30

 50

 70

 90

 20 40 60 80 100

Fig. 11. Memory requirements of EPCP-growth in various databases

proposed model is efficient. As a part of future work, we would like to study the
change in periodic behavior of rare items due to noise.

References

1. Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of
items in large databases. In: SIGMOD. pp. 207–216 (1993)

2. Amphawan, K., Lenca, P., Surarerks, A.: Mining top-k periodic-frequent pattern
from transactional databases without support threshold. In: Advances in Informa-
tion Technology. pp. 18–29 (2009)

3. Anirudh, A., Kirany, R.U., Reddy, P.K., Kitsuregaway, M.: Memory efficient min-
ing of periodic-frequent patterns in transactional databases. In: 2016 IEEE Sym-
posium Series on Computational Intelligence (SSCI). pp. 1–8 (Dec 2016)

4. Aref, W.G., Elfeky, M.G., Elmagarmid, A.K.: Incremental, online, and merge min-
ing of partial periodic patterns in time-series databases. IEEE TKDE 16(3), 332–
342 (Mar 2004)

5. Bradshaw, J.: Yams - yet another measure of similarity. In: EuroMUG (2001),
http://www.daylight.com/meetings/emug01/Bradshaw/Similarity/YAMS.html

6. Brin, S., Motwani, R., Silverstein, C.: Beyond market baskets: generalizing associ-
ation rules to correlations. In: SIGMOD. pp. 265–276 (1997)

7. Cao, H., Cheung, D., Mamoulis, N.: Discovering partial periodic patterns in dis-
crete data sequences. In: Advances in Knowledge Discovery and Data Mining. vol.
3056, pp. 653–658 (2004)

8. Chen, S.S., Huang, T.C.K., Lin, Z.M.: New and efficient knowledge discovery of
partial periodic patterns with multiple minimum supports. J. Syst. Softw. 84(10),
1638–1651 (Oct 2011)

9. Deng, Z.H.: Diffnodesets: An efficient structure for fast mining frequent itemsets.
Applied Soft Computing 41, 214 – 223 (2016), http://www.sciencedirect.com/
science/article/pii/S156849461600017X

10. Deng, Z.H., Lv, S.L.: Prepost+: An efficient n-lists-based algorithm for mining fre-
quent itemsets via childrenparent equivalence pruning. Expert Systems with Ap-
plications 42(13), 5424 – 5432 (2015), http://www.sciencedirect.com/science/
article/pii/S0957417415001803

11. Fournier-Viger, P., Lin, J.C.W., Duong, Q.H., Dam, T.L.: PHM: Mining Periodic
High-Utility Itemsets, pp. 64–79. Springer International Publishing, Cham (2016),
http://dx.doi.org/10.1007/978-3-319-41561-1_6

26 J. N. Venkatesh, R. Uday Kiran, P. Krishna Reddy and Masaru Kitsuregawa

12. Han, J., Cheng, H., Xin, D., Yan, X.: Frequent pattern mining: Current status and
future directions. DMKD 14(1) (2007)

13. Han, J., Dong, G., Yin, Y.: Efficient mining of partial periodic patterns in time
series database. In: ICDE. pp. 106–115 (1999)

14. Han, J., Gong, W., Yin, Y.: Mining segment-wise periodic patterns in time-related
databases. In: KDD. pp. 214–218 (1998)

15. Han, J., Pei, J., Yin, Y., Mao, R.: Mining frequent patterns without candidate
generation: A frequent-pattern tree approach. Data Min. Knowl. Discov. 8(1), 53–
87 (Jan 2004)

16. Hu, Y.H., Chen, Y.L.: Mining association rules with multiple minimum supports: a
new mining algorithm and a support tuning mechanism. Decision Support Systems
42(1), 1–24 (2006)

17. Kim, S., Barsky, M., Han, J.: Efficient mining of top correlated patterns based on
null-invariant measures. In: PKDD. pp. 177–192 (2011)

18. Kim, W.Y., Lee, Y.K., Han, J.: Ccmine: Efficient mining of confidence-closed corre-
lated patterns. In: Advances in Knowledge Discovery and Data Mining. pp. 569–579
(2004)

19. Kiran, R.U., Kitsuregawa, M.: Novel techniques to reduce search space in periodic-
frequent pattern mining. In: DASFAA (2). pp. 377–391 (2014)

20. Kiran, R.U., Reddy, P.K.: Towards efficient mining of periodic-frequent patterns
in transactional databases. In: DEXA (2). pp. 194–208 (2010)

21. Kiran, R.U., Reddy, P.K.: Novel techniques to reduce search space in multiple
minimum supports-based frequent pattern mining algorithms. In: EDBT. pp. 11–
20 (2011)

22. Kiran, R.U., Shang, H., Toyoda, M., Kitsuregawa, M.: Discovering partial peri-
odic itemsets in temporal databases. In: Proceedings of the 29th International
Conference on Scientific and Statistical Database Management, Chicago, IL, USA,
June 27-29, 2017. pp. 30:1–30:6 (2017), http://doi.acm.org/10.1145/3085504.
3085535

23. Kiran, R.U., Venkatesh, J.N., Fournier-Viger, P., Toyoda, M., Reddy, P.K., Kit-
suregawa, M.: Discovering periodic patterns in non-uniform temporal databases.
In: Advances in Knowledge Discovery and Data Mining - 21st Pacific-Asia Con-
ference, PAKDD 2017, Jeju, South Korea, May 23-26, 2017, Proceedings, Part II.
pp. 604–617 (2017), https://doi.org/10.1007/978-3-319-57529-2_47

24. Kiran, R.U., Venkatesh, J., Toyoda, M., Kitsuregawa, M., Reddy, P.K.: Discovering
partial periodic-frequent patterns in a transactional database. Journal of Systems
and Software 125, 170 – 182 (2017), http://www.sciencedirect.com/science/

article/pii/S0164121216302382
25. Lee, Y.K., Kim, W.Y., Cao, D., Han, J.: Comine: efficient mining of correlated

patterns. In: ICDM. pp. 581–584 (2003)
26. Liu, B., Hsu, W., Ma, Y.: Mining association rules with multiple minimum sup-

ports. In: KDD. pp. 337–341 (1999)
27. Nofong, V.M.: Discovering productive periodic frequent patterns in transactional

databases. Annals of Data Science 3(3), 235–249 (Sep 2016)
28. Omiecinski, E.R.: Alternative interest measures for mining associations in

databases. IEEE Trans. on Knowl. and Data Eng. 15, 57–69 (January 2003)
29. Özden, B., Ramaswamy, S., Silberschatz, A.: Cyclic association rules. In: ICDE.

pp. 412–421 (1998)
30. Pyun, G., Yun, U., Ryu, K.H.: Efficient frequent pattern mining based on lin-

ear prefix tree. Knowledge-Based Systems 55, 125 – 139 (2014), http://www.

sciencedirect.com/science/article/pii/S0950705113003249

Discovering Periodic-Frequent Patterns in Transactional Databases 27

31. Rashid, M.M., Karim, M.R., Jeong, B.S., Choi, H.J.: Efficient mining regularly
frequent patterns in transactional databases. In: DASFAA (1). pp. 258–271 (2012)

32. Surana, A., Kiran, R.U., Reddy, P.K.: Selecting a right interestingness measure for
rare association rules. In: International Conference on Management of Data. pp.
105–115 (2010)

33. Surana, A., Kiran, R.U., Reddy, P.K.: An efficient approach to mine periodic-
frequent patterns in transactional databases. In: PAKDD Workshops. pp. 254–266
(2011)

34. Tan, P.N., Kumar, V., Srivastava, J.: Selecting the right interestingness measure
for association patterns. In: Knowl. Discovery and Data Mining. pp. 32–41 (2002)

35. Tanbeer, S.K., Ahmed, C.F., Jeong, B.S., Lee, Y.K.: Discovering periodic-frequent
patterns in transactional databases. In: PAKDD. pp. 242–253 (2009)

36. Uno, T., Kiyomi, M., Arimura, H.: Lcm ver.3: Collaboration of array, bitmap
and prefix tree for frequent itemset mining. In: Proceedings of the 1st Inter-
national Workshop on Open Source Data Mining: Frequent Pattern Mining Im-
plementations. pp. 77–86. OSDM ’05, ACM, New York, NY, USA (2005), http:
//doi.acm.org/10.1145/1133905.1133916

37. Vaillant, B., Lenca, P., Lallich, S.: A Clustering of Interestingness Measures, pp.
290–297. Springer Berlin Heidelberg, Berlin, Heidelberg (2004), http://dx.doi.
org/10.1007/978-3-540-30214-8_23

38. Venkatesh, J.N., Kiran, R.U., Reddy, P.K., Kitsuregawa, M.: Discovering periodic-
frequent patterns in transactional databases using all-confidence and periodic-all-
confidence. In: Database and Expert Systems Applications - 27th International
Conference, DEXA 2016, Porto, Portugal, September 5-8, 2016, Proceedings, Part
I. pp. 55–70 (2016)

39. Wu, T., Chen, Y., Han, J.: Re-examination of interestingness measures in pattern
mining: a unified framework. DMKD 21(3), 371–397 (2010)

40. Xiong, H., Tan, P.N., Kumar, V.: Hyperclique pattern discovery. Data Mining and
Knowledge Discovery 13(2), 219–242 (2006)

41. Yang, J., Wang, W., Yu, P.S.: Mining asynchronous periodic patterns in time series
data. IEEE Trans. Knowl. Data Eng. pp. 613–628 (2003)

42. Zaki, M.J., Parthasarathy, S., Ogihara, M., Li, W.: New algorithms for fast dis-
covery of association rules. Tech. rep., Rochester, NY, USA (1997)

43. Zhang, M., Kao, B., Cheung, D.W., Yip, K.Y.: Mining periodic patterns with gap
requirement from sequences. ACM Trans. Knowl. Discov. Data 1(2) (Aug 2007)

44. Zhou, Z., Wu, Z., Wang, C., Feng, Y.: Efficiently mining mutually and positively
correlated patterns. In: Advanced Data Mining and Applications, Second Interna-
tional Conference, ADMA 2006, Xi’an, China, August 14-16, 2006, Proceedings.
pp. 118–125 (2006)

45. Zhou, Z., Wu, Z., Wang, C., Feng, Y.: Mining both associated and correlated
patterns. In: Computational Science - ICCS 2006, 6th International Conference,
Reading, UK, May 28-31, 2006, Proceedings, Part IV. pp. 468–475 (2006)

