Finite element analysis of buried continuous pipeline subjected to fault motion

by

Vasudeo Chaudhary, Venkata Dilip Kumar Pasupuleti, Pradeep Kumar Ramacharla

in

International Journal of Structural Engineering

Report No: IIIT/TR/2013/-1

Centre for Earthquake Engineering
International Institute of Information Technology
Hyderabad - 500 032, INDIA
October 2013
Finite element analysis of buried continuous pipeline subjected to fault motion

Vasudeo Chaudhari
Civil Engineering Department, Gandhiag Institute of Technology, Gandhinagar, Gujarat 382721, India
E-mail: chaudhari.vasudeo@gmail.com

Venkata Dilip Kumar P* and Ramancharla Pradeep Kumar
Earthquake Engineering Research Centre, International Institute of Information Technology, Gachibowli, Hyderabad 500 032, Andhra Pradesh, India
E-mail: dilipkumarvp@research.iiit.ac.in
E-mail: ramancharla@iiit.ac.in
*Corresponding author

Abstract: Pipeline generally extends over long distances traversing through wide variety of different soils, geological conditions and regions with different seismicity. Most analytical models developed in the past for pipeline fault crossing are of limited usage as models developed were useful only for strike slip fault. Incorporating the large geometric changes in analytical study is a tricky task; however pipeline subjected to the fault motion itself is a phenomenon of large geometric changes, especially when pipeline subjected to compression in addition to material deformation, it also undergoes local buckling with bending. With computational advancement in numerical modelling, pipes under compression can also be studied. In this paper, a 3D FE-based numerical model is suggested to carry out pipeline performance of buried pipeline subjected to fault motion including material non-linearity and large geometric deformations. A 3D FE programme is developed using MATLAB. Displacement controlled arc-length technique is implemented to solve the non-linear behaviour.

Keywords: buried continuous pipeline; fault motion; non-linear-large deformation FEM; displacement controlled arc-length technique.

Reference to this paper should be made as follows: Chaudhari, V., Kumar P, V.D. and Kumar, R.P. (2013) 'Finite element analysis of buried continuous pipeline subjected to fault motion', Int. J. Structural Engineering, Vol. 4, No. 4, pp.314–331.

Biographical notes: Vasudeo Chaudhari is currently working as an Assistant Professor in the Department of Civil Engineering at Gandhinagar Institute of Technology, Gujarat, India. He has received his MS by research in Computer Aided Structural Engineering from IIIT-Hyderabad, India. His research interests include material non-linearity, large deformation, finite element method, structural dynamics and code development.
1 Introduction

Pipelines are common transportation means for oil and natural gas, which always act as an important lifeline facility for any nation. Generally, these pipelines laid underground for economic, aesthetic, safety, and environmental reasons. While running through the length and breadth of country pipeline expose to diverse soil conditions. Seismic hazard of pipeline is well demonstrated and documented during past several earthquakes all over the world. Predominant study for seismic hazard of pipeline started after the 1971 San Fernando earthquake. Newmark and Hall (1975) did the pioneer work for pipeline crossing the fault by assuming pipe as cable in their analytical study. The only force considered acting on the pipeline is the friction force at the pipe-soil interface along the longitudinal direction without lateral force offered by the soil. This model further modified by Kennedy et al. (1977) and by incorporating the lateral pressure offered by the soil. In 1985, Wang and Yeh further modified model by dividing pipe in to three regions depending up on the curvature in the pipeline with I region near fault plane. It was also assumed that strain in region II and III are elastic while the strain in region I is inelastic. For straight portion in region III they used the theory of beam on elastic foundation. In a model they notify that maximum bending strain is in the region II and crucial combination of axial and bending strain will at junction of II and III region hence concluded that the pipe would fail at this junction, which seems counterintuitive since one expects tensile ruptures at or very near to the fault crossing. Newly Karamitros et al. (2007) introduced a number of refinements in the method proposed by Wang and Yeh (1985). Previous method overlooked the effect of axial force on bending stiffness. Karamitros et al. suggested most unfavourable combination of axial and bending would not necessarily take place at the end of high curvature portion but within the zone, closer to the fault crossing point.

In addition to above, analytical models there are several numerical models proposed, which includes beam on non-linear Winkler foundation. In which pipe modelled with beam/shell elements and soil with springs (Takada et al., 1998). Nodes of the shell elements of the pipe are attached to soil that is modelled as springs.

2 Scope

Though improved analytical models provide a good result but models are developed with fundamental assumptions that that curvature of the pipeline on either side of fault plane is
symmetrical. In case of strike slip fault-pipeline crossing pipe essentially deforms in the horizontal plane were soil on either side of the pipeline extends to very large or for infinite distance. This offers the symmetric resistance to the pipe on either side in the plane of pipe deformation. This symmetry also takes care of point of contra-flexure to draw it closer to the pipeline fault crossing. Hence, the analytical models developed in past are applicable to strike slip fault motions case only. For dip slip fault motion, the pipe-soil interaction forces along the fault motion are dissimilar due to great variation in the depth. Lesser depth of the soil above the pipe offer less resistance compare to bottom soil for deformed pipe. In addition to this deformation of the pipe is greatly depends on the soil movement of the upper layer which usually differs in hanging wall and footwall. Hence, assumptions for identical curvature on either side of the fault plane no longer valid. Analytical study also restrict for pipeline under tension cases. Pipeline under compression usually involves general as well as local geometric instability issues [e.g., pipeline during 1999, Izmit, Turkey earthquake (EERI, 1999)]. Handling complex geometric stability is always hard to models in analytical studies. Faulting itself is phenomenon of large geometric changes hence theory of small deformation no longer suitable for pipeline fault crossing which were used in past. Hence, study of the pipeline under compression needs appropriate understanding as it involves both material as well as geometric failure.

However numerical models proposed by Takada et al. (1998), Liu et al. (2004) for buried pipeline using shell element and non-linear springs for pipe and soil respectively can perform for pipeline under compression. Though, post yielding of soil spring gives higher strain value in pipe. This could be the result of the inadequacy of the spring models to incorporate the actual soil behaviour during soil yielding. In addition, these models do not consider the large geometric changes of upper soil layer, which has significant effect on pipeline performance. Stiffness of each individual spring is independent, i.e., each spring behaves independently which disregard the effect of lateral soil confinement.

Considering limitation of previous models and day-by-day increasing capacity, speed and powerfulness of the computer, the computer can make it possible to solve field problems by doing more realistic numerical analysis. Here more realistic numerical programme using three-dimensional FEM is developed for buried continuous pipelines. This programme is developed using isoparametric brick element. The developed model takes care of material as well as large geometric changes to comprise fault motion.

3 Methodology

3.1 Numerical modelling

The governing non-linear finite element equation for of solid continuum can be obtained from principle of virtual work. Equation (1) is adaptation from the one presented by Bathe (2002) and Reddy (2004) for updated Lagrangian approach.

\[
(K_L + K_{NL}) \Delta U(i) = t^{e} - R - t^{e} F(i-1)
\]
(1)

where
Finite element analysis of buried continuous pipeline

\[\mathbf{K}_f = \int_V \mathbf{B}_i^T \mathbf{D} \mathbf{B}_i dV \]

\[\mathbf{K}_{NL} = \int_V \mathbf{B}_{NL}^T \mathbf{t} \mathbf{B}_{NL} dV \]

\[\mathbf{F}(i-1) + \int_V \mathbf{B}_{NL}^T \mathbf{t} \mathbf{B}_{NL} dV \]

\(\mathbf{t} \) = Cauchy stress vector

\(\mathbf{R} \) = vector of externally applied loads at time \(t + \Delta t \)

\(\mathbf{B} \) = transformation matrix.

The numerical integration is performed according to Gaussian quadrature rule. A code is developed in MATLAB-7.9 for three dimensional FEA using eight nodded isoparametric elements.

The successes of any non-linear analysis is primarily depends on the accuracy, convergence, efficiency and stability of non-linear solution technique. The non-linear equation (1) can be solved by various non-linear solution techniques available in the literature. Among this full or modified Newton-Raphson, method is simple to understand, implement and it generally converges in few iterations. However, this method fails to trace the non-linear equilibrium path through the limit or bifurcation points, in vicinity of limit points, tangent stiffness matrix becomes singular and the iteration procedure diverges. This is common in buckling and strain softening non-linear material behaviour type of the analysis. The displacement boundary condition in non-linear analysis needs linearisation of the prescribed boundary displacement, which can be easily incorporated in other methods like arc-length method. Hence, more robust arc-length method is employed for this work. Arc-length method originally developed by Riks (1972, 1979) and Wempnner (1971) and later modified by several researchers.

3.2 Arc-length method

Though this method is developed in '70s there are number of modification has been suggested in past few years. one can find elementary of the method from any standard literature either from Riks (1972, 1976) paper or Crisfield (1981), etc. Generally, there are two approaches are used, a fixed arc length and varying arc length. The fixed arc length is suitable for load and/or forced controlled, while for path following method, new arc-length is evaluated at the beginning of each load step to ensure the achievement of the solution procedure. The success of the path following method depends on three essential stages. Firstly, proper selection of root for quadratic equation obtained by simplifications of the additional constrains equation, which leads to a quadratic equation in terms of the incremental load factor. Secondly, predicting value of the load-factor for at each increment. Generally, load-factor for current increment is computed depending on the rate of convergence of the solution process in previous increment. For first increment, trial value is assumed as 1/5 or 1/10 of total load (Memon and Su, 2004). Finally, to avoid the doubling back of the equilibrium path, determination of the sign for the predicted load factor needs sufficient alertness. In case of divergence from the solution path, the arc-length is reduced and computations are done again.

Generally, incremental equations in structural non-linear static analysis take the following form.
where $t_{+\Delta f}$ is the out of balance force, λ is a scalar, known as load level parameter, which is considered as an unknown parameter and R is a given fixed external force vector. The incremental displacement for current load step with modified Newton-Raphson method assumption of fixed K_T is calculate as,

$$t_{+\Delta f} \delta u^{(i-1)} = t_{+\Delta f} \delta u^{(i-1)} + \delta(t_{+\Delta f}) \bar{u}^{(i-1)} + \delta^{t_{+\Delta f}} \hat{u}$$

where

$$t_{+\Delta f} \delta u^{(i-1)} = -(K_T^{-1}) f^{(i-1)}$$

and

$$\delta^{t_{+\Delta f}} \hat{u} = -(K_T^{-1}) R$$

Figure 1 Iterative procedure for arc length method

Note that the K_T is evaluated at the end of using the converged solution u of the last load step (Figure 1). Hence, improved prediction of the equilibrium configuration can be obtain as

$$t_{+\Delta f} u = t_{u} + t_{+\Delta f} \delta u^{(i)}$$

$$t_{+\Delta f} \Delta u^{(i)} = t_{+\Delta f} \Delta u^{(i-1)} + t_{+\Delta f} \delta u^{(i-1)}$$

$$t_{+\Delta f} f^{(i)} = t_{+\Delta f} f^{(i-1)} + \delta^{t_{+\Delta f}} \bar{u}^{(i-1)}$$
For the first iteration of the first load step it is assumed that $u = 0$, for the first iteration of other than first load step $\delta t \neq 1 \lambda (1)$ can be calculated from incremental arc-length form written as,

$$\Delta u \Delta R + \bar{\varepsilon}^2 \psi^2 R = \Delta l^2 \tag{9}$$

where Δu and λ are converged incremental quantities, Δl is fixed radius of desired intersection, and ψ is the scaling parameter for loading terms, for cylindrical arc-length method, $\psi = 0$ (Crisfield, 1981); while for the spherical arc-length methods $\psi = 1$. For cylindrical arc-length equation (9) simplified as,

$$t \Delta_1 u^{(1)} + \Delta_1 l = \Delta l^2 \tag{10}$$

Substituting for $t \Delta_1 u^{(1)}$ from equation (7) gives quadratic equation for incremental in the load parameter $t \Delta_1 u^{(i-1)}$.

$$A_1 \left[t \Delta_1 u^{(i-1)} \right]^2 + A_2 \left[t \Delta_1 u^{(i-1)} \right] + A_3 = 0 \tag{11}$$

where

- $A_1 = \delta^{t \Delta_1 u^{(1)}} \delta^{t \Delta_1 u'}$
- $A_2 = 2 \left(2 \delta^{t \Delta_1 u^{(i-1)}} \delta^{t \Delta_1 u^{(i-1)}} \right) \delta^{t \Delta_1 u'}$
- $A_3 = \left(\delta^{t \Delta_1 u^{(i-1)}} \delta^{t \Delta_1 u^{(i-1)}} \right) \left(\delta^{t \Delta_1 u^{(i-1)}} \delta^{t \Delta_1 u^{(i-1)}} \right) \left(\Delta l^2 \right) - \left(\Delta l \right)^2$

To avoid the tracking backing the equilibrium path Crisfield suggested the root should be such that, the angle between the incremental solutions at two consecutive iterations $\Delta u^{(i-1)}$ and $\Delta u^{(i)}$ be minimum. The incremental load factor λ is updated according to equation (8).

3.2.1 The predictor solution

The auto-selection and auto-adjustment of the arc-length increment in each incremental step are very important, which are related to the correctness and efficiency of the numerical algorithms. In order to do that, the convergent information in the last arc-length incremental step is very useful and must be analysed. The main equations in controlling the arc-length increments available is as follows

$$t \Delta_1 / l = t \Delta_1 \left(\frac{L_d}{L_o} \right)^n \tag{12}$$

where $t \Delta_1$ is the arc-length used in the last iteration of last increment, L_d is the number of desired iterations (usually < 5) and L_o is the number of iterations required for convergence in the previous step. Crisfield suggested that n should be set to $1/2$. The first arc-length is computed as

$$\Delta l = \delta^{t \lambda^{(1)}} \sqrt{\delta^{t \bar{u}} \delta^{t \bar{u}}} \tag{13}$$

Hence, the incremental load factor for cylindrical arc length method can be predicted as

$$\delta^{t \lambda^{(1)}} = (\pm) \frac{\Delta l}{\sqrt{\delta^{t \bar{u}} \delta^{t \bar{u}}}} \tag{14}$$
The choice of the sign of the incremental load factor in the predictor phase of arc-length methods is known to be of paramount importance in determining the success of such procedures in tracing unstable equilibrium paths. If the wrong sign is predicted, the solution sequence ‘doubles back’ on the original load-deflection curve and the arc-length method fails to trace the complete path. Many procedures have been proposed to predict the continuation direction, i.e., to choose the sign of in the predictor solution such that it does not ‘track back’ on the current path.

The most popular ones appear to be the predictors based on

a. The sign of current tangent stiffness determinant. Follow the sign of $|K_T|$

$$\text{sign}(\delta \lambda) = \text{sign}(|K_T|).$$

b. Incremental work. Follow the sign of the predictor work increment

$$\text{sign}(\delta \lambda) = \text{sign}(\delta \hat{u}^T R).$$

c. The predictor criterion of Feng. Follow the sign of history of the current equilibrium path and the current tangential solution.

$$\text{sign}(\delta \lambda) = \text{sign}(\delta \hat{u}^T \Delta u).$$

Procedure (a) is widely used and works well in the absence of bifurcations. In the presence of bifurcations, however, it is known not to be appropriate and fails in most cases. As pointed out by Crisfield, its ill behaviour stem from the fact that the sign of $|K_T|$ changes either when a limit point or when a bifurcation point is passed. In this case, the predictor cannot distinguish between these two quite different situations, unless further analyses are undertaken. In the presence of a bifurcation, instead of following the current path, the solution will oscillate about the bifurcation point. de Souza Neto and Feng (1999) stated that the procedure (b), on the other hand, is ‘blind’ to bifurcations and can continue to trace an equilibrium path after passing a bifurcation point. However, this criterion proves ineffective in the descending branch of the load-deflection curve in ‘snap-back’ problems, where the predicted positive ‘slope’ will provoke a ‘back tracking’ load increase. Feng et al. (1996) proposed a direction prediction criterion (c). Whereby the sign of the predictor load factor is made to coincide with the sign of the internal product between the previous converged incremental displacement Δu and the current tangential solution, $\delta \hat{u}^T$. A key point concerning the above criterion is the fact that Δu carries with it information about the history of the current equilibrium path. de Souza Neto and Feng (1999) shown by means of geometric arguments that the resulting predictor of Feng et al. (1996) approach can easily overcome the problems associated with criteria (a) and (b).

3.3 Validation of code

For the validation of developed code, tests have been performed on the 3D cantilever beam. Load-deflection curve is compared with commercially available finite element package ANSYS-12. Material behaviour assumed for the test is same as pipe material. Beam dimensions, meshing and point load considered at free end are given in Table 1. Figure 2 shows perfectly matching load-deflection curve obtained from developed code and Ansys.
Table 1
Comparison of code and ANSYS results

<table>
<thead>
<tr>
<th>$L \times D \times B$ (m)</th>
<th>Element size (m)</th>
<th>Point load (kN)</th>
<th>Model U_{max} (m)</th>
<th>ANSYS U_{max} (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$3.0 \times 0.2 \times 0.05$</td>
<td>$0.05 \times 0.05 \times 0.05$</td>
<td>80</td>
<td>0.130</td>
<td>0.135</td>
</tr>
</tbody>
</table>

Figure 2
Comparison of results between ANSYS and FE code (see online version for colours)

3.4 Model dimensions

The coordinate system and notations used for this work are shown in Figure 3. In reality, soil media does not have any fixed boundaries or can be assumed at infinite distance, which is virtually impossible to incorporate in numerical model, hence model dimensions are determined for boundary effect and it considered as 80 m (L) \times 12 m (H) \times 15 m (W).
The pipe near the fault is usually suffers large deformation, which is not so long, about 10 m to 30 m, and the damaged point of pipe also occurred in this pipe segment (Liu et al., 2004). For this, meshing of varying element lengths is considered to optimise the memory and time usage. Finer meshing of 0.5 m element lengths are used near the fault region for 20 m distance on either side. Then for remaining length 1 m, element size is used. Pipe is divided in eight equal divisions in circumferential direction and single division is made for wall thickness. Near the pipe, soil is meshed by small elements with varying size for the square region of 1.2 m (Figure 4). Elements size of soil, which is far from the pipe, is taken as 1.5 m.

Default parameter in evaluation of pipeline performance are considered as maximum fault offset (Δ_{max}) = 0.6 m, pipeline fault crossing angle (ϕ) = 900, diameter of the pipeline (D) = 0.61 m (24 inches), pipeline wall thickness (t_p) = 0.0095 m (0.375 inches) and depth of the buried pipeline $s(d_b)$ = 0.91 m (3 feet). Performance is evaluated for no
internal pressure condition. Few assumptions are made in the development of the models. It assumed that there is perfect bond exist between the soil and pipe material.

3.5 Boundary condition

The target ground displacements are applied at the bottom, with the free top boundary. While for side boundaries, all nodal degree of freedoms other than, in the direction of the components of targeted displacements are constrained. The total soil mass block is divided in to two parts, on either side of the fault plane. The fault displacement (Δ) is applied to first block by keeping other one fixed.

3.6 Material modelling

The For pipe Ramberg-Osgood relationship is one of the most widely used models (O’Rourke, 1999; IITK-GSDMA, 2007), while for soil hyperbolic is common (Kramer, 2007). Hence, the same are used in this study which are summarised below.

\[
\varepsilon = \frac{\sigma}{E_i} \left[1 + \frac{r}{1 + r} \left(\frac{\sigma}{\sigma_y} \right)^n \right]
\]

(15)

where

- \(\varepsilon \) engineering strain
- \(\sigma \) stress in the pipe
- \(E_i \) initial Young’s modulus
- \(\sigma_y \) yield strain of the pipe material
- \(r, n \) Ramberg-Osgood parameters adopted as \(r = 31.50 \) and \(n = 38.32 \) (Karamitros et al., 2007).

\[
\tau = \frac{G_{\text{max},\gamma}}{1 + (G_{\text{max},\gamma}/\tau_{\text{max}}) |\gamma|}
\]

(16)

where

- \(\tau \) shear stress
- \(\gamma \) shear strain
- \(G_{\text{max}} \) maximum shear modulus
- \(\tau_{\text{max}} \) maximum shear stress.

The API5L-X 65 steel pipe is frequently used in literature (Newmark and Hall, 1975; Karamitros et al., 2007, etc.) hence the same is adopted for this study. Table 2 show the properties used for API5L-X 65 pipe material. While soil is assumed as typical sand with initial Young’s modulus as \(E_i = 50 \) Mpa and Poisson’s ratio 0.4. Table 3 show constants used in hyperbolic model.
<table>
<thead>
<tr>
<th>Properties for AP15L-X-65 pipe</th>
<th>Magnitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Young’s modulus</td>
<td>210 Gpa</td>
</tr>
<tr>
<td>Yield stress (σ_y)</td>
<td>490 Mpa</td>
</tr>
<tr>
<td>Failure stress (σ_f)</td>
<td>513 Mpa</td>
</tr>
<tr>
<td>Failure strain (ε_f)</td>
<td>4%</td>
</tr>
<tr>
<td>Poisson’s ratio (μ)</td>
<td>0.3 Mpa</td>
</tr>
<tr>
<td>Density (ρ_p)</td>
<td>7.8 g/cm³ Mpa</td>
</tr>
</tbody>
</table>

Table 3 Constants for hyperbolic model

<table>
<thead>
<tr>
<th>Maximum density sand properties</th>
<th>Magnitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum shear modulus (G_{max})</td>
<td>60 Mpa</td>
</tr>
<tr>
<td>Maximum shear strength (τ_{max})</td>
<td>0.0216 Mpa</td>
</tr>
<tr>
<td>Failure stress (σ_f)</td>
<td>513 Mpa</td>
</tr>
<tr>
<td>Density (ρ_s)</td>
<td>1.44 g/cm³ Mpa</td>
</tr>
</tbody>
</table>

4 Results and discussion

The performance of continues buried pipeline crossing active fault is studied using proposed finite element models. The developed model can implemented for all sort of fault motion with variation in other geometric parameters. Here case of strike slip is taken to determine the influencing on the performance of pipeline for the fault offset (Δ), pipeline-fault crossing angle (β), wall thickness to diameter ratio $\left(\frac{t_p}{D}\right)$, depth of the buried pipeline (d_b) and their combinations. In the non-linear numerical analysis of soil maximum ground displacements is generally restricted up to 5% of the total depth of the model beyond which results usually deviate and are unrealistic, hence maximum component of fault offset is limited to 0.6 m. Total fault offset of 0.6 m is applied with an increment of 0.1 m. Pipeline fault plane angle is varied from 40° to 140° with an increment of 10°. The pipeline wall-thickness 0.0095, 0.0103 and 0.0190 are considered, while depth is varied 2 to 4 feet.

4.1 Pipeline subjected to strike slip fault motion

4.1.1 Effect of the fault offset

Hence, for $\phi = 900$ pipeline mainly subjected to the bending; while for positive ϕ small angle pipeline will be under pure compression. Hence, for determining the effect of the fault offset 60° angles is chosen, where effect of both the direct and bending strain can be seen. Figure 5 shows the effect of the fault offset on total and bending strain distribution in the pipeline. Maximum fault offset 0.6 m is applied with an increment of 0.1 m. Generally two kind of failure are associated with pipeline, first material failure when pipe
material strained beyond sustain limit in general yield strain and geometric failure in which geometry of the pipe is so distort that pipeline becomes inadequate to pass the fluid. From Figure 5(a), it can be seen that maximum strain ($\varepsilon_{xx} = 0.00186$) generating in the pipeline for fault offset 0.2 m is just below the yield strain ($\varepsilon_y = 0.002$). From which it can be said that pipe do not have any serious damage upto 0.2 m fault offset. Thereafter the difference of the strain curve, near the fault plane continuously increases. This indicates that pipe material entered in plastic stage. While discussing about the pipeline damage there are two points, which are most significant. First, how much material has yielded and secondly how much length of the pipe enters in the plastic stage. This has great significance in case of post event repair and maintains. This large longitudinal strain in the pipe material further causes reduction in the wall thickness (developing upon Poisson’s ratio), which may not be safe design thickness for the internal pressure and other load. From Figure 5(a), one can see that for the 0.3 m fault offset only near the fault plane about 10 m pipe length is beyond the yield strain. While majority of the pipe length is just crosses the yield strain. There after both length of pipeline crossing yield point and maximum strain beyond the yield strain increasing seriously. For the considered cases no large geometric failure is observed. From bending strain distribution curves [Figure 5(b)] one can observe that bending strain in the pipe is smoothly increasing up to the 0.4 fault offset. After that bending strain distribution curve slightly disturbing for 0.5 and 0.6 m fault offset at 10 m on either side of the fault plane. This kind of disorder mainly signifies the local buckling on the pipe.

Figure 5 Effect of fault offset on strain distribution for strike slip with $\Delta y = 0.1$ m to 0.6 m and $\phi = 600$, (a) Total strain effect (b) Bending strain effect (see online version for colours)
4.1.2 Effect of the pipeline fault angle

The pipeline fault angle is second most vital parameter related to the pipeline performance. Hence, effect of the pipeline-fault angle (ϕ) is studied by varying the pipeline-fault angle from 40°, 60°, 80°, 90°, 100°, 120° to 140° for fault offset of 0.6 m. The performance analysis of pipeline becomes more complex due to unlike behaviour of the pipeline under compression and tension. In general, under tension pipe is fail due to excessive straining of pipe material, while in case of compression in addition to the material failure geometric failure is also takes place. The foremost point that can be observe in the strain distribution curve plotted in Figure 6 is maximum strain developing for negative pipeline fault angle ($\phi < 90^\circ$) is much higher than the positive pipeline fault crossing angle ($\phi > 90^\circ$). The reason for this can be understood as, when pipeline is subjected to the compression pipe has a chance of bending and/or buckling and hence the fault offset is accommodate by the geometric change without much internal deformation, which leads to lesser internal deformation in the pipe. There are two fundament troubles associated with the pipeline buckling, firstly it is a sudden phenomenon and may have an adversely affect the operational pipelines. Secondly, the large geometric distortion during buckling further causes pressure loss in the pipeline, which is the foremost significant parameter for the petroleum pipeline. In case of pipeline is under tension whole fault displacement at the pipe fault crossing is needed to accommodate by the internal deformation of pipeline material. From Figure 6, it can also observe that for ±80° angle
total normal strain distribution are similar on the opposite side of zero strain axis. This indicates that the buckling of the pipe does not take place for all pipeline fault angle.

Figure 6 Effect of pipeline fault angle on total normal strain distribution for strike slip with $\Delta y = 0.6$ m (see online version for colours)

4.1.3 Effect of pipeline wall thickness to diameter ratio

In general design of the wall thickness is the mainly function of internal pressure. Where it is design for hoop and longitudinal stresses and checked for secondary loads like overburden and live loads. Nevertheless, the present study shows that thickness to diameter ratio has great hold on the pipeline performance crossing strike slip fault especially when pipeline subjected to the compression. To understand the effect of the wall thickness here 0.0095, 0.0136 and 0.0190 are the three wall-thickness to diameter ratios considered. To have an effect of geometric failure under compression parametric study is performed for $\phi = 40^\circ$ where pipe can be subjected to sufficient compression. The maximum fault offset here could able applied is 0.47 m after which pipe subjected to large geometric changes which further causes soil failure and diverges numerical analysis.

Geometric failure of the pipe can be more clearly understood by observing the deform pipe hence for deformed shapes of the pipes with different wall thickness to diameter ratios are plotted in Figure 7. From figure, it can be clearly seen that pipe with thicker wall thickness subject to more geometric changes than the pipe with thinner wall thickness. However, thicker wall pipe has higher internal deformation capacity, which can be observer in the strain distribution (Figure 8). Nevertheless, for less strain thicker pipe got more damage this clearly indicates geometric failure of the thick wall pipe. The reason for this is quite understandable that thinner wall pipe has lesser moment of inertia
can be easily bent and deform to accommodate the fault displacement. On other hand thicker wall pipe, which subjected to less strain indicate that lesser internal deformation, therefore thick wall pipe needs to accommodate fault displacement by large geometric deformations. From the above discursion, it is clear that when pipe is subjected strike-slip fault with $\phi < 90^\circ$, thicker pipe are more vulnerable to geometric failure.

Figure 7 Effect of pipeline wall thickness to diameter ratio for strike-slip with $\Delta y = 0.46$ m and $\phi = 40^\circ$ (see online version for colours)

If we observe the deformed shape of the pipe in Figure 7, it can be seen that pipe with 0.0095 wall thickness to diameter pipe is deformed only in the horizontal plane which indicates bending of the pipe with strike-slip fault motion. While in case of $(\frac{t}{D}) = 0.0136$ pipe is look like little moved with fault and then bulged in horizontal plane indicates geometric failure in plastic stage. Finally in case $(\frac{t}{D}) = 0.0190$ pipe is purely buckled in vertical plane, which is catastrophic geometric failure. Much lesser depth the depth of top soil compares to three remaining direction offer lesser resistance to the buckling pipe. That could be the reason why strong pipe buckled in vertical plane.
Figure 8 Effect of pipeline wall thickness to diameter ratio for strike-slip with $\Delta y = 0.46$ m and $\phi = 40^\circ$ (see online version for colours)

![Figure 8: Total Strain vs Length](image1)

Figure 9 Effect of buried depth for strike slip with $\Delta y = 0.6$ m and $\phi = 60^\circ$ (see online version for colours)

![Figure 9: Total Strain vs Length](image2)
4.1.4 Effect of the buried depth

Here the effect of the buried depth of pipeline is determined for 2 feet, 3 feet and 4 feet depth. The fault offset applied here is 0.6 m with pipeline fault angle 60°. From Figure 9, it is clearly seen that there is no significant effect of the depth can be seen on the strain distributions. Fault displacement and pipe deformations are happening in the horizontal plane while effect of depth is more significant in vertical plane. In addition, the assumption made in the model for perfect bonding between pipe and soil diminishes effect. In case of frictional forces overburden pressure plays a vital role, which is directly, depends on the buried depth of the pipe.

5 Conclusions

Main conclusions of this study can be stated as following:

- Numerical modelling of physical problem if implemented with latest updated methods could yield much better results.
- Apart from material behaviour and its failure, geometrical behaviour becomes important when studies are done on pipes subjected to thrust fault motions.
- Compression failure behaviour of the pipelines is catastrophic in nature as it leads to sudden buckling. Which crucially depends on the pipe wall thickness.
- A strike-slip numerical study of buried pipelines with different parameters has shown the effect of both direct and bending strain.
- Though here developed model is implemented on the strike slip fault motion but the same can be implemented for other kind of ground motions.

References

Finite element analysis of buried continuous pipeline

O’Rourke, M.J. and Liu, X. (1999) Response of Buried Pipelines Subject to Earthquake Effects, Multidisciplinary Centre for Earthquake Engineering and Research, Monograph No. 3.

