Why Does Substitution of Thymine by 6-Ethynylpyridone Increase the Thermostability of DNA Double Helices?

by

Antarip Halder, Ayan Datta, Dhananjay Bhattacharyya, Abhijit Mitra

in

Journal of Physical Chemistry B

Report No: IIIT/TR/2014/-1

Centre for Computational Natural Sciences and Bioinformatics
International Institute of Information Technology
Hyderabad - 500 032, INDIA
May 2014
Why Does Substitution of Thymine by 6-Ethynylpyridone Increase the Thermostability of DNA Double Helices?

Antarip Haldera, Ayan Dattab, Dhananjay Bhattacharyyac, Abhijit Mitraa

aCenter for Computational Natural Sciences and Bioinformatics (CCNSB), International Institute of Information Technology (IIIT-H), Gachibowli, Hyderabad 500032, India
bDepartment of Spectroscopy, Indian Association for the Cultivation of Science, 2A&B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India.
cBiophysics Division, Saha Institute of Nuclear Physics(SINP), 1/AF, Bidhannagar, Kolkata 700064, India

Efficiency of 6-ethynylpyridone (E), a potential Thymine (T) analogue, which forms high-fidelity base pairs with Adenine (A) and gives rise to stabler DNA duplexes, with stability comparable to those containing canonical Cytosine(C):Guanine(G) base pairs, has been reported recently. Estimates of the interaction energies, involving geometry optimization at the DFT level (including middle range dispersion interactions) followed by single point energy calculation at MP2 level, in excellent correlation with the experimentally observed trends, show that E binds more strongly and more discriminatively with A, than T does. Detailed analysis reveals that the increase in base-base interaction arises out of conjugation of acetylenic π electrons with the ring π system of E, which results in not only an extra stabilizing C–H \cdots π interaction in the EA pair, it also leads to a strengthening of the conventional hydrogen bonds.

However, the computed base-base interaction energy for the EA pair was found to be much less than that of the canonical CG pair implying that the difference in the TA versus EA base pairing interaction alone cannot explain the large experimentally observed increase in the thermostability of DNA duplexes, where a TA pair is replaced with an EA pair. Our computations show that the conjugation of acetylenic π electrons with the ring π system also possibly plays a role in increasing the stacking potential of the EA pair, which in turn, can explain its marked influence in the enhancement of duplex stability.

Link: \url{http://pubs.acs.org/doi/pdf/10.1021/jp412416p}