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Abstract. SD-OCT is a non invasive cross sectional imaging modality
useful for diagnosis of macular defects. Efficient detection and segmen-
tation of the abnormalities seen as biomarkers in OCT can help in an-
alyzing the progression of the disease and advising effective treatment
for the associated disease. In this work we proposes a fully automated
Generalized Motion Pattern(GMP) based segmentation method using a
cascade of fully convolutional networks for detection and segmentation
of retinal fluids from SD-OCT scans. General methods for segmentation
depend on domain knowledge based feature extraction , whereas we pro-
pose a method based on Generalized Motion Pattern (GMP) [1] which
is derived by inducing motion to an image to suppress the background.
The proposed method is parallelizable and handles inter-scanner variabil-
ity efficiently. Our method achieves a mean Dice score of 0.61,0.70 and
0.73 during segmentation and a mean AUC of 0.85,0.84 and 0.87 during
detection for the 3 types of fluids IRF,SRF and PDE respectively.

Keywords: Generalized Motion Pattern,fluid-associated abnormalities, retina,
OCT.

1 Introduction

The main cause of blindness in developed countries are age related macular
degeneration(AMD)[2] ,retinal vein occlusion[3] and diabetic maculopathy[4] .
Retinal fluid (SRF and IRF) and sub-retinal pigment epithelium (sub-RPE)
fluid(PED) are signs of age related macular degeneration and cystoidal macular
edema thus their presence can act as a biomarker for early diagnosis of AMD
and is helpful in analyzing prognosis of the disease and advising a treatment for
the same.

Spectral Domain OCT is a rapidly developing imaging modality which is ef-
fective in detection and quantization of cysts and sub retinal fluid abnormalities[5].
However, manual detection and segmentation of retinal fluids and sub-RPE flu-
ids are laborious and time consuming. The presence, location, and extent of sub
retinal fluid acts as disease biomarkers, thus their volumetric quantification is
beneficial for disease analysis, patient-tailored treatment and treatment progress



assessment. Hence, there is a need for automated methods which gives accurate
detection and quantization of the abnormalities.

We Propose a fully automatic method based on Generalized Motion Pattern
for segmentation and detection of the retinal fluids using a cascaded Fully Con-
volutional Network(FCN)[6] to form a joint segmentation and detection pipeline.
FCN is shown to perform well in segmentation task across various modalities,
Patrick et al.[7] used a cascade of FCN to segment out liver and associated abnor-
malities achieving state of the art results in the same. The Generalized Motion
Pattern helps in enhancement of the abnormalities such as retinal fluids and
aids in speckle noise reduction. In this paper, a scanner independent method is
developed by creating an ensemble of GMP’s from the OCT scan and using this
ensemble to perform our segmentation and detection task. This work is based
on our previous work using a similar concept[8]. The details about the work is
explained in section 2 of this paper.

2 Method and Data

The pipeline for our method is shown in Fig.1 which is a comprises of 3 stages
for segmentation and detection. In the first stage, we preprocess the data by
denoising followed by resizing and ROI extraction. This data is used to generate
the Generalized Motion Pattern images which forms the input to the cascaded
FCN. The second stage in the pipeline is a cascade of fully convolutional networks
for segmentation and detection of the retinal fluids. The final stage of the network
involves post processing of the obtained prediction by refining the result. The
details of the individual stages is explained in the subsections below .

Fig. 1. Pipeline of the proposed method

2.1 First Stage: Preprocessing and ROI extraction

SD-OCT volumes are captured using different scanners and scanning protocols.
Each scanner has varying intensity profile, and image resolution. In order to
standardize data across scanners and reduce processing overhead we resize the
image to 512×256. The standardized volumes are then used to obtain a rough
ROI region. We approach this problem by finding the brightest pixel in the
slice along a column. Fitting a 1D Gaussian curve on the column wise projected
vector for a volume, we obtaion the mean position of the brightest pixel. An ROI



volume is extracted for the data by taking a margin around this pixel location.
This reduced volume of size 256 ×256 reduces the overhead for the later stage.

OCT volumes contains varying speckle noise depending on the tissue cap-
tured. This noise often creates problems in functioning of various image process-
ing algorithms. Traditional denoising algorithms like median filtering and adap-
tive filtering based methods cannot preserve the boundary information. We use
Spectral Total Variation based denoising [9] approach in this work because this
method reduces the texture content and produces a smooth piecewise constant
images preserving the edges. This denoised data is used as input for synthesizing
GMP images.

Generalized Motion Pattern Images The varying intensity and presence of
different types of abnormalities across subjects and scanners makes automatic
and accurate detection and segmentation task challenging. We propose a scheme
to enhance the presence of an abnormality using Generalized Motion Pattern.

Given a gray scale image I, its GMP representation IGMP is defined as

IGMP (r) = f(I(Tj(r)|1 ≤ j ≤ N)) (1)

Here r denotes the pixel location,Tj(1 ≤ j ≤ N) denotes jth rigid transformation
applied to image I which produces jth resultant image. Total N such images are
produced for each scan and these images are combined into the GMP map using
a coalescing function f(.), where f(.) maps the set of pixel intensities at each
location r across the transformed images to a scaler value.

For this challenge the rigid transformation chosen was translation. The trans-
lation is applied at an angle θ to the image in steps of δ from −D toD at different
directions θ. Hence, for translation in any direction θ we get a stack of 2D

δ trans-
lated images along with the original image, forming a combined total of 2D

δ + 1
images. The step size δ is set to be 1 and D to be 5 steps in this work. These
images are then combined here using the coalescing function minimum as the
intensity profile for the retinal fluids is darker compared to its neighborhood.

Abnormalities appear in varying size and orientations. Translation along a
single direction is insufficient for enhancing the abnormality region. Therefore,
we propose to construct an ensemble of GMP images at various angles θ and
enhance the presence of retinal fluids. In this paper we used θ as varying between
0◦and180◦ in steps of 22.5◦ resulting in an ensemble of K GMP images for each
associated slice. This can be represented as

Ck = {IkGMP |1 < k < K} (2)

This ensemble of GMP images is combined by another coalescing function ψ as

Ienhanced = ψ(Ck) (3)

Volume correspondence helps in extracting contextual information of the retinal
fluids. The presence of fluid in one slice is a marker for the presence of simi-
lar fluid structures in neighboring locality across slices. For introducing volume



correspondence we propose using k neighboring slices in addition to the corre-
sponding slice when constructing the GMP stack in our experiments we used k
as 1 that is, using the slice preceding and the slice following the current slice .

2.2 Cascaded FCN Architecture

Using a predefined coalescing function (ψ) like mean, max or min is ineffective
in enhancing only a particular type of abnormalities when the intensity of the
surrounding is similar to the object of interest. Hence, there is a need to learn
an optimal function ψ capable of enhancing abnormalities of interests across
subjects and scanners.

Fig. 2. FCN architecture used in both stages, for stage 1, we allow the network to
learn the best function ψ for combining the GMP ensemble to segment and detect the
existence of retinal fluids, in stage 2 of the Cascaded FCN, the fluid prediction mask
from stage1 and the original image are provided as inputs and the network produces a
3 different prediction masks for the 3 types of fluids

A CNN is generally used in computer vision tasks for solving classification
and segmentation tasks. In this work we propose to use a CNN architecture
to learn the function ψ that will combine the ensemble of GMP images. The
learned function ψ will effectively map the ensemble of GMP images into an
output image predicting the retinal fluids. The design of the architecture for



this problem is based on a cascade of Fully Convolutional Networks consisting
of two independent networks joined in an end to end form to perform joint
segmentation and detection. Both the independent networks here are similar to
the widely used U-net FCN architecture[10]. The description of the network is
shown in the Fig. 2.

The output of the first stage of the cascaded FCN is a map representing prob-
able retinal fluid regions. The thresholded output of this map forms the retinal
fluid prediction mask. GMP creates a smearing effect resulting in suppressing
the edges of abnormalities with very less volume. To overcome this we provide
the original image along with the predicted map as the input for the next stage
of the cascaded network. The final FCN generates three masks for each type of
retinal fluid as its output. The detection subtask is handled by introducing a
fully connected layers at the end of first cascaded stage. The predication at indi-
vidual slice level for each type of retinal fluid is combined to produce a prediction
for the entire volume as mentioned in section 2.3.

2.3 Post Processing

The predicted regions from the FCN is sometimes plagued by presence of noise,
creating false positives. The background region of some tissue structures resem-
bling abnormalities are also enhanced by the GMP construction stage. These
structures that affect the segmentation accuracy are removed during post pro-
cessing.

Thresholding the predicted map, we obtain segmented fluid regions as binary
mask. Predicted regions having very few connected components are discarded
as noise. Using this segmented mask and original image, we cluster the fluid
regions in the intensity space removing the false positives. Likewise for fluid
detection, we threshold the slice wise prediction and detect abnormality in a
slice by the gradient in probability measure. An increase or decrease in the slice
wise probability of fluid indicates appearance or disappearance of abnormality
across the volume. Since abnormalities are persistent 3D structures, considering
k neighboring slices while predicting the presence of a fluid aids in accurate
detection and helps eradicate false positives.

3 Experimental settings

3.1 Dataset

The proposed method is evaluated on 70 SD-OCT volumes from 3 different OCT
vendors Cirrus, Spectralis and Topcon. Each vendor data contains 3 sets with
8 volumes each. However, the third set from the Topcon vendor contains only 6
volumes.

3.2 Implementation details

The training and testing on the entire dataset is done using k-fold cross validation
with k being eight. Our cascaded FCN was implemented using Keras library with



Theano backend. Only the slices containing abnormalities were used for training
the FCN with negative dice coefficient as the loss function. The first stage of the
cascaded FCN was trained for 200 epochs and the second stage of the cascaded
FCN was trained for 150 epochs for each fold on an Nvidia GTX-Titan X GPU.

3.3 Result Evaluation

The qualitative results of the proposed system is shown in the Fig. 3. The de-
tection task is evaluated using Area Under the Curve(AUC) metric and the seg-
mentation task is evaluated using Dice Coefficient(DC) metric and the results
are presented in Table1

Table 1. Detection and Segmentation Results

Scanner Name AUC Score Dice Score
IRF SRF PED IRF SRF PED

Cirrus part1 0.67 0.90 0.92 0.66 0.82 0.69
Cirrus part2 0.84 0.83 0.87 0.73 0.68 0.72
Cirrus part3 0.82 0.84 0.87 0.61 0.75 0.79

Spectralis part1 0.83 0.81 0.91 0.59 0.61 0.60
Spectralis part2 0.82 0.88 0.89 0.47 0.85 0.82
Spectralis part3 0.81 0.74 0.89 0.60 0.76 0.81
Topcon part1 0.87 0.850 0.90 0.64 0.71 0.73
Topcon part2 1 0.812 0.90 0.53 0.64 0.70
Topcon part3 1 0.863 0.65 0.72 0.50 0.75

Mean 0.85 0.84 0.87 0.61 0.70 0.73

4 Conclusion

In this paper we presented a method to segment and detect retinal fluids in SD-
OCT scans. Unlike segmentation methods which rely on domain based knowledge
we presented a method which can be employed for segmenting a wide variety of
abnormalities across different modalities. Inferring from the results, our method
performed better on SRF and PDE compared to IRF in segmentation task due



(a) De-noised OCT slice (b)Predicted fluid region (c)Manual fluid segmentation

(d) De-noised OCT slice (e)Predicted fluid region (f)Manual fluid segmentation

(g) De-noised OCT slice (h)Predicted fluid region (i)Manual fluid segmentation

(j) De-noised OCT slice (k)Predicted fluid region (l)Manual fluid segmentation

(m) De-noised OCT slice (n)Predicted fluid region (o)Manual fluid segmentation

Fig. 3. Qualitative results for fluid segmentation



to the inherent nature of IRF resembling noise that gets enhanced while con-
structing the GMP.

The effects of this were not as profound in the detection stage as compared to
the segmentation stage as the entire volume was taken into consideration when
making prediction for the detection stage as compared to the segmentation stage
which makes a prediction on a slice wise basis thus, small pockets of retinal fluids
which are ignored as false positives do not affect the detection performance to
the same extent as segmentation.

Methods based on domain knowledge such as location and intensity of layers
can be taken into consideration in the post processing stage of the pipeline to
adapt to these issues and a more advanced denoising algorithm based on local
structures can also be adopted during the preprocessing stage to help improve
the performance of the network.
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