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Abstract—Non-orthogonal multiple access (NOMA) has been
conceived to be promising technology for the fifth generation (5G)
wireless communication systems. In this paper, we investigate
the downlink sum rate maximization problem in a relay based
network which employs NOMA principles for encoding and
decoding. The problem to be optimized is non-convex. In order to
get around the difficulty to deal with non-convexity, we propose a
minorization-maximization technique based algorithm to jointly
optimize source power allocation and relay precoder design. We
then solve the problem to optimally allocate power at source and
design the precoder at relay. For the case of two destination nodes,
we propose a grid search based approach. Simulation results are
provided to illustrate the performance of the proposed algorithm
and also the comparison of the proposed approach with existing
approaches.

Index Terms—Non-orthogonal multiple access, optimization,
relay, sum rate.

I. INTRODUCTION

Multiple access techniques in wireless communication sys-
tems have always been a crucial factor in determining the spec-
tral efficiency, quality of service (QoS) and reliability. Hence,
the design of multiple access technique forms the crucial part
of physical layer design. Contemporary orthogonal multiple
access techniques (OMA) such as time division multiple access
(TDMA), frequency division multiple access (FDMA) and
code division multiple access (CDMA) suffer from spectral
inefficiency. In this regard, non-orthogonal multiple access
(NOMA) has been envisaged to be the promising technology
for fifth generation (5G) wireless systems. NOMA utilizes
power domain to multiplex the users as opposed to OMA
such as TDMA, FDMA and CDMA, which multiplex in time,
frequency and code, respectively [1]–[3]. It has been shown in
the earlier works that NOMA outperforms conventional OMA
techniques in terms of spectral efficiency and achievable sum
rate [4], [5].

In NOMA, the source transmits the signal by multiplexing
the messages intended for all the users using the superposi-
tion coding technique. At the destination node, users employ
successive interference cancellation (SIC) technique to decode
their signal [6]. For this to happen successfully the users are
arranged in increasing order of their effective channel gains.
The power allocation to the users can be done according to
their effective channel gains i.e., weak user gets more power
share than a strong user, or can be done based on their required

QoS [5], [7]. In this way, effective sum rate can be improved
and also weak users will be served with optimal resources.

When distance between source and destination node is
larger it causes severe path loss of the signal. To circumvent
this problem relay systems play a crucial role. Broadly there
are two types of relay systems one being amplify and forward
(AF) relays and other being decode and forward (DF) relays.
Relay based NOMA systems have been studied in [8], [9].

There has been increase in interest in designing NOMA-
based systems with various optimization criterion. Optimal
source precoder design to maximize sum rate in downlink
NOMA based multiple output single input system (MISO)
system using minorization-maximization (MM) technique is
studied in [10]. In [11], maximizing the achievable rate of
the destination node with best channel conditions is exploited
subject to minimum target rates to other destination nodes. In
this paper, we investigate sum rate maximization in NOMA
based system with a source node, AF relay node and multiple
destination nodes. The problem being non convex, we employ
MM technique to approximate the problem to convex when
one of the optimization variables is fixed. Then we employ
coordinate ascent based algorithm to maximize the objective.
Notations : Bold lowercase and uppercase letters are used

to represent vectors and matrices, respectively. The transpose,
hermitian transpose, and trace of a matrix A are denoted as
AT , AH , and tr (A), respectively. The vec (A) denote the
vectorization of matrix and the Kronecker product are denoted
by A and ⊗, respectively. The notations A � 0 and A � 0
indicate positive definite and positive semi-definite matrices,
respectively. The symbols CN×N , RN×N and RN×N+ are used
for N ×N -dimensional complex, real and nonnegative real
spaces, respectively. The l2 norm of a vector x ∈ CN×1
is denoted as ‖x‖ which is defined as ‖x‖ =

∑N
n=1 |xn|2

where |xn| is the absolute value of nth coordinate of vector x.
CN (µ,C) indicates circularly symmetric complex Gaussian
vector with mean vector µ and covariance matrix C. The
minimum, maximum and statistical expectation, argument
functions are denoted by min(·), max(·), E[·] and arg{}(·),
respectively.

II. SYSTEM MODEL

We consider the downlink scenario for the NOMA principle
based network which consists of a source node with single
antenna, an AF relay node with N antennas and K destination



nodes with single antenna each. Direct links between source
and K destinations nodes are ignored as they undergo large
path loss when compared with the links via relay. The network
functions in half-duplex mode i.e., communication between the
cognitive source and K cognitive destination nodes takes place
in two time slots. In the first time slot, the source encodes all
K destination symbols sk ∈ C1×1 and E

[
|sk|2

]
= 1 ∀ k ∈

K , {1, 2, . . . ,K} using superposition coding and transmits
the signal

xs =

K∑
k=1

√
Pk sk, (1)

where Pk is the transmit power allocated to the symbol
intended for kth destination node. The signal received at the
relay is given by

r = hxs + w, (2)

where h ∈ CN×1 is the channel gain vector from source to re-
lay and w ∼ CN (0, σ2

wI) is the additive white Gaussian noise
vector at relay. In the second time slot, the relay node amplifies
the received signal with precoding matrix F ∈ CN×N and
transmits the following signal

xr = Fr. (3)

The signal received at the kth destination node is given by,

yk = gHk Fhxs + gHk Fw + nk, (4)

where gk ∈ CN×1 is the channel gain vector from relay to
kth destination node, and noise term nk ∼ CN (0, σ2

k) is
the additive white Gaussian noise at kth destination node.
The destination nodes use SIC for retrieving the message
signal. We assume ‖g1‖ ≤ ‖g2‖ ≤ . . . ≤ ‖gK‖,
which is essential for SIC decoding. The achievable signal-
to-interference-plus-noise ratio (SINR) Γk,j at jth destination
node after it removes kth destination message using SIC,
j ∈ J , {k, k + 1, . . . ,K}, based on (4) is

Γk,j =
Pk|gHj Fh|2(∑K

i=k+1 Pi

)
|gHj Fh|2 + σ2

wg
H
k FFHgk + σ2

k

, (5)

The achievable rate after SIC operation at the jth destination
node to decode signal of kth destination node is

Rk,j =
1

2
log2(1 + Γk,j). (6)

For kth destination node signal to be decoded successfully at
jth destination node it is required that R̃k , min(Rk,j) ∀ j ∈
J has to be at least equal to achievable rate of kth user i.e.,
Rk,k. This is the rate with minimum SINR Γk,j ∀ j ∈ J.
Based on this criterion, the sum rate R̃sum is given as

R̃sum =
1

2

K∑
k=1

log2
(
1 +min

(
Γk,j

))
∀ j ∈ J. (7)

In addition to the above requirement, in order to boost SINR
of the destination nodes with weak channel gains and to ensure
non-zero rate allocation for such users we consider

P1 ≥ P2 . . . ≥ PK . (8)

The total power allocation at source and the relay is con-
strained as

K∑
k=1

Pk ≤ Ps , (9a)

tr
(
FE
[
rrH

]
F
)
≤ Pr (9b)

where Ps and Pr are power budgets at source and relay nodes
respectively. We can reformulate relay power constraint using
(2) as

‖Fh‖22Ps + σ2
wtr
(
FFH

)
≤ Pr. (10)

III. SOURCE POWER ALLOCATION AND RELAY PRECODER
DESIGN

We study the problem of maximizing the sum rate (7) by op-
timally designing source power allocation and relay precoder
design. Thus, this optimization problem can be formulated as
follows:

max
F,{Pk}

1

2

K∑
k=1

log2

(
1 + min

j
(Γk,j)

)
,∀ j ∈ J, (11a)

s.t. Pk ≤ min (P1...Pk−1) ,∀ k ∈ K, (11b)
K∑
k=1

Pk ≤ Ps, (11c)

‖Fh‖22Ps + σ2tr
(
FFH

)
≤ Pr . (11d)

The problem in (11) is non-convex as it involves SINR terms
and globally optimal solution is intractable to obtain. So,
we employ several steps to approximate it to convex which
ensures mathematical tractability.

The objective in problem (11) in its present form is difficult
to deal with as it involves SINR terms, which are non-convex.
So, we can equivalently re-write it as

max
F,{Pk},{rk}

(
K∏
k=1

rk

) 1
2K

, (12a)

s.t. rk − 1 ≤ min (Γk,j) , (12b)
(11b), (11c) & (11d), (12c)
∀ k ∈ K, j ∈ J,

where rk ∈ R1×1
+ ∀ k ∈ K and objective (12a) is obtained by

considering the fact that log2 (·) is a monotonically increasing
function and the geometric mean of rk for ∀ k ∈ K is concave
and increasing. Thus, geometric mean can be expressed as
system of second-order cone (SOC) constraints [12]. Hence,
this conversion doesn’t affect the optimal solution of the
objective function (11d).

The problem (12) is still non-convex due to the constraint



(12b). We can write the constraint (12b) explicitly using (5)
as

rk − 1 ≤
Pk|gHj Fh|2(∑K

i=k+1 Pi

)
|gHj Fh|2 + σ2

wg
H
j FFHgj + σ2

k

, J.

(13)

Nevertheless, it can be approximated to convex when either
of the optimization variables F or {Pk} is fixed. For this
purpose we handle each case individually as follows:

For given Relay Precoding Matrix F
The contraint (13) can be written as

rk − 1 ≤ Pkϑj(∑K
i=k+1 Pi

)
ϑj + ωj

, ∀ k ∈ K, j ∈ J, (14)

where, ϑk = |gHk Fh|2, ωk = σ2
wg

H
k FFHgk + σ2

k. (15)

For given mk ∈ R1×1
+ ∀ k ∈ K, it holds that

rkmk −mk ≤ Pkϑj , (16a)(
K∑

i=k+1

Pi

)
ϑj + ωk ≤ mk, ∀ k ∈ K, j ∈ J. (16b)

But, the bilinear term in (16a) is non-convex because Hessian
matrix for bilinear term is not positive semidefinite. So, we
approximate it to convex by employing the following steps

rkmk = 0.25 (rk +mk)
2 − 0.25 (rk −mk)

2
. (17)

As both terms right side of equality are individually convex
we can approximate the term (rk −mk)

2 by employing MM
technique.
Consider a real valued convex function u(z), it follows from
first order condition for convexity [13] that

u (z) ≥ u
(
zt
)

+
(
∇zu

(
zt
))T (

z− zt
)
, v
(
z, zt

)
, (18)

where, v
(
z, zt

)
is the Taylor’s first order approximation of the

function u (z) around zt. The function v
(
z, zt

)
is minorized

version of u (z) and is called as surrogate function. Following
properties hold true from (18):

u
(
z
)
≥ v
(
z, zt

)
,∀ z, (19a)

u
(
zt
)

= v
(
zt, zt

)
, (19b)

∇zu (z) = ∇zv
(
z, zt

)
, for any z = zt (19c)

The basic idea of MM technique is to maximize the surrogate
function v

(
z, zt

)
over z, in order to obtain the next iteration

point to linearize the function u (z), i.e.,

zt+1 = max
z
v
(
z, zt

)
. (20)

Maximization of the surrogate function drives u (z) upwards
until it reaches local maximum as follows

u
(
zt+1

)
= u

(
zt+1

)
− v
(
zt+1, zt

)
+ v
(
zt+1, zt

)
, (21a)

≥ v
(
zt+1, zt

)
, (21b)

≥ v
(
zt, zt

)
, (21c)

= u
(
zt
)
, (21d)

where, (21b) follows from (19a), (21c) is obtained from of
(20) and (21d) is due to (19b).
Hence, from the above discussion it is clear that we can
maximize a convex function by maximizing its surrogate
function. As the linear surrogate functions are computationally
less complex, we employ this approach in our problem. Now,
the term (rk −mk)

2 in (17) can be approximated by its first
order Taylor series Lk around rtk, m

t
k as

rkmk = 0.25 (rk +mk)
2 − 0.25Lk, (22)

where, Lk =
[
(rtk −mt

k)
2

+ 2 (rtk −mt
k) (rk − rtk −mk +mt

k)
]

Thus, constraints in (16) become

0.25 (rk +mk)
2 − 0.25Lk −mk ≤ Pkϑj , (23a)(

K∑
i=k+1

Pi

)
ϑj + ωj ≤ mk, ∀ k ∈ K, j ∈ J. (23b)

Thus, the constraints in (23) is now convex in optimization
variables {Pk} and {rk}.

For given Source Power Allocation {Pk} :
The constraints which depend on F are (13) and (11d). We
can reformulate as follows :

Using the equality [14]

vec (M1M2M3) =
(
MT

3 ⊗M1

)
vec (M2) ,

where M1,M2 and M3 are arbitrary matrices, the constraints
(13) and (11d) can be written as

rk − 1 ≤ fHBk,jf

fHCk,jf + σ2
k

, ∀ k ∈ K, j ∈ J, (24a)

fHDf ≤ Pr, (24b)

where, f = vec (F)

Bk,j = Pk
(
h∗hT ⊗ gjg

H
j

)
,

Ck,j =
(
h∗hT ⊗ gjg

H
j

)( K∑
i=k+1

Pi

)
+ σ2

wI⊗ gjg
H
j ,

D =
(
h∗hT ⊗ I

)
Ps + σ2

wI.
(25)

For given mk ∈ R1×1
+ , it holds that

rkmk −mk ≤ fHBk,jf , (26a)

fHCk,jf + σ2
k ≤ mk, ∀ k ∈ K, j ∈ J. (26b)

We approximate the bilinear term similar to (22)

0.25 (rk +mk)
2 − 0.25Lk −mk ≤ fHBk,jf , (27a)

f HCk,jf + σ2
k ≤ mk. (27b)

The term fHBk,jf in (27a) can be linearized to its surrogate
function using Taylor’s first order approximation. As the
function above is real valued with complex domain we use
Writinger’s derivative [15], [16] to obtain linear function.



Taylor’s first order approximation of the function f(z) around
point z0 is given by

f(z, z0) = f(z0) + 2<{
(
∂f

∂z

)T
(z− z0)} (28)

The constraint in (27) can be written in SOC constraint form
as

0.25 (rk +mk)
2 − 0.25Lk −mk ≤ L̃k,j , (29a)∥∥∥∥∥∥

 C̃k,jf
σk

(mk − 1) /2

∥∥∥∥∥∥
2

≤ (mk + 1) /2, (29b)

where, L̃k,j = 2<
{(

f t
)H

Bk,jf
}
−
{(

f t
)H

Bk,jf
t
}
,

Ck,j = C̃k,jC̃
H
k,j ,∵ Ck,j � 0

The final optimization problem which is convex is

max
F,{Pk},{rk},{mk}

(
K∏
k=1

rk

) 1
2K

(30a)

s.t. (11b), (11c), (23) for given F (30b)
(24b), (29) for given {Pk} (30c)

Algorithm 1 MM based NOMA Sum Rate algorithm

1: initialize
[
r0k,m

0
k, P

0
k ,F

0
]

from feasibility set of (11),
n=0;

2: repeat
3: Given F solve (30) iteratively for {rk}, {mk}, {Pk}
4: Given Pk solve (30) iteratively for {rk}, {mk}, {F}
5: n = n+ 1;
6: until Convergence

Remarks : When initial conditions are chosen from
feasible set of the original problem (11), (n + 1)th iteration
in algorithm also produces a solution set from feasibility
set. The Algorithm 1 returns non-decreasing sequence
of objective values because surrogate functions used for
approximating non-convex functions are non-decreasing
with each iteration. As the feasibility set is convex and
compact ( feasibility set is bounded by power budgets at
source and relay), the algorithm do converges to a finite value.

Grid Search based algorithm : In previous section, we
proposed MM based problem (30) which achieves local
optimal solution for (12). Now, we propose grid search based
algorithm over {rk}∀ k ∈ K.

For given relay precoding matrix F, the constraint (14) can
be formulated as

(rk − 1)

[(
K∑

i=k+1

Pk

)
ϑj + ωj

]
≤ Pkϑj , ∀ k ∈ K, j ∈ J.

(31)
The problem (12) can be solved using K-D grid search
over {rk} and convex feasibility over {Pk}. This feasibility

checking problem is a linear optimization problem.
For given power {Pk}, the constraints (11d) and (14) can be
formulated using (24) into SOC constraints as follows

‖
(
C̃k,jf
σ

)
‖2 ≤ |fH

bk,j√
rk − 1

|, ∀ k ∈ K, j ∈ J,

(32a)

‖D̃f‖2 =
√
Pr, (32b)

where, Bk,j = bk,jb
H
k,j , Ck,j = C̃k,jC̃

H
k,j , D = D̃D̃H .

(32c)

Decomposition of matrices is possible due to the fact that
Bk,j � 0 and is also rank one, Ck,j � 0, D � 0 ∀ k ∈ K, j ∈
J. The problem (12) can be solved using K-D grid search over
{rk} and convex feasibility over F. This feasibility checking
problem is a SOC problem. Hence, the problem (12) can be
iteratively solved to obtain globally optimal solution for quasi-
convex problem over F and {Pk}. But, solving this problem
requires solving sequence of linear and SOC problems which
is computationally exhaustive, but achieves better optimum
solution than MM based algorithm.

IV. SIMULATION RESULTS

All the simulations are performed on MATLAB. For
simulations, we consider the channel model to be Rayleigh
fading. We consider the gain vector to be h ∼ CN (0, I)
and Channel gain vectors from relay node to destination

nodes to be gk ∼ CN
(
0,
√
d−αk

)
∀ k ∈ K, where

dk is the normalized distance from relay node to the kth

destination node and α denotes the path loss exponent. Path
loss exponent considered is α = 2. We consider d1 = 100,
dK = 1 and all other destination nodes are equally spaced
between dK and d1. This ensures the assumption of channels
‖g1‖2 ≤ ‖g2‖2 . . . ≤ ‖gK‖2. We assume relay node has
N = 4 antennas. Source SNR is Ps/σ2 = 25 dB. We consider
all the noise components w and nk ∀ k ∈ K to be i.i.d and
have unit variance. Simulation results are averaged over 500
realizations.
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Fig. 1: Achievable sum rate vs Pr/σ2 of proposed MM based
algorithm.
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Fig. 2: Comparison of achievable rate of Kth user of MM
based algorithm with AO based algorithm.
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Fig. 3: Average number of iterations required for convergence
of the algorithm for different users of MM based algorithm.

Fig. 1 shows variation of sum rate with SNR at relay node
Pr/σ

2 with different number of users K = 2, 3, 4, 5, and 6. We
simulate grid search (GS) based algorithm for K=2 destination
nodes and it can be seen to perform better than MM based
algorithm but at the cost of computational complexity.

In [11], alternating optimization (AO) method is considered
to maximize rate of the destination node with best channel
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Fig. 4: Achievable sum rate vs Pr/σ2 with different source
power Ps/σ2 of proposed MM based algorithm.

gain i.e., of Kth destination node and their results have shown
to perform better than conventional OMA based network.
Due to infeasibility of the algorithm as stated in remark 2
of [11], we consider target rates as 0.5, 0.25 and 0.16 for
K = 2, K = 4 and K = 6, respectively and source budget
Ps/σ

2 = 25 dB. Fig. 2 shows results of proposed MM based
algorithm outperform AO based algorithm. Hence, this also
means proposed algorithm outperforms conventional OMA
[11]. For comparison purpose we plot results obtained from
grid search algorithm.

Fig. 3 shows the average number of iterations required for
algorithm convergence. It can be seen that, average number
of iterations for convergence is increasing with increase in
number of users for given relay node SNR. It is also increasing
with increase in relay node SNR.

Fig. 4 shows the variation of sum rate with varying relay
node SNR, Pr/σ2 = 25 dB, and source node SNR, Ps/σ2 =
25 dB, for K = 5. It is observed that sum rate increases
with increase in either of the source budget or relay budget.
This shows that parameters which govern sum rate are source
budget and relay budget.

V. CONCLUSION

In this paper, we have considered a relay based NOMA
system. We proposed MM based algorithm to design the opti-
mal power allocation at source and relay precoder design. This
optimal design maximizes the sum rate while maintaining non
zero rates to users with small channel gains. The performance
of the proposed algorithm was illustrated in the simulation
results. It is shown that proposed algorithm performs well
when compared to OA algorithm. It is observed that sum
rate increases with increase in SNR at source or relay nodes.
The average number of iterations taken for convergence also
increases with increase in power budget at relay node.
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