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Abstract
Automatic speaker verification systems are more vulnerable to
spoofing attacks. Recently, various countermeasures have been
developed for detecting high technology attacks such as speech
synthesis and voice conversion. However, there is a wide gap in
dealing with replay attacks. In this paper, we propose a new fea-
ture for replay attack detection based on single frequency filter-
ing (SFF), which provides high temporal and spectral resolution
at each instant. Single frequency filtering cepstral coefficients
(SFFCC) with Gaussian mixture model classifier is used for the
experimentation on the standard BTAS-2016 corpus. The previ-
ously reported best result, which is based on constant Q cepstral
coefficients (CQCC) has achieved a half total error rate of 0.67
% on this data-set. Our proposed method outperforms the state
of the art (CQCC) with a half total error rate of 0.0002 %.
Index Terms: Replay attack, countermeasures, Gaussian mix-
ture model, single frequency filtering cepstral coefficients.

1. Introduction
Recently developed automatic speaker verification (ASV) sys-
tems based on i-vectors [1] and joint factor analysis [2] have
achieved a great performance and these systems are less prone
to noise and channel effects. These characteristics of ASV sys-
tems makes them to ready for mass market adoption in biomet-
ric applications like banking transactions, e-commerce, police
investigation, and so on [3, 4]. On the other hand, there are con-
cerns about the vulnerability of ASV technology to spoofing
attacks [5]. Spoofing attack refers to an attack by a fraudster,
who wants to gain the access of authorized user by providing
the fake voice samples. In the literature, four types of spoofing
attacks were considered [3, 5]. They are impersonation, speech
synthesis, voice conversion, and replay.

In impersonation, an attacker will try to mimic the target
speaker voice without any help of speech technology. From
the studies on impersonation attacks, it was found that there
is not much effect on speaker verification performance [3]. In
Speech synthesis (SS) and voice conversion (VC) based attacks,
the attacker produces the authorized user speech by using dif-
ferent SS and VC techniques. The SS and VC based attacks
are known as high technology spoofing attacks. These attacks
are extensively studied in ASV spoof 2015 challenge [6] by in-
troducing a standard corpus and protocol to evaluate different
countermeasures [7, 8, 9, 10, 11, 12, 13, 14, 15], developed
by researchers across the globe on the same platform to pro-
vide a generalized solution to spoofing attacks. In the replay
attack, the attacker uses a pre-recorded voice collected from
genuine target speaker and try to access the speaker verifica-
tion system. Replay is a simple spoofing attack, which does not

require any specific knowledge of speech processing. Availabil-
ity of low cost and high quality recording devices made replay
attack as a significant threat to ASV technology. There are a
few studies [16, 17, 18, 19] on replay attack detection in the lit-
erature. These studies are based on either comparing the new
access voices with previously stored voices or studies based
on the channel noise characteristics. These studies are per-
formed on personalized databases, which are publicly not avail-
able. In biometrics theory applications and systems (BTAS)
2016, a speaker anti-spoofing challenge [20] was announced
to detect replay attacks by introducing a standard BTAS 2016
corpus. Several researchers have addressed their countermea-
sures [20, 21, 22, 23] for replay attack detection on this corpus.
The constant Q cepstral coefficients (CQCC) [24] based anti-
spoofing system has achieved good performance for SS [24],
VC [24], and replay attacks [23]. In this paper, the focus is on
replay attack detection and the proposed countermeasures will
be evaluated on BTAS 2016 corpus.

Most of the studies on replay attack use block processing of
speech. Hence, they can not capture the instantaneous spectral
changes within the analysis block. Also, most of the success-
ful methods for spoof detection either captures the information
present in low-frequency or high-frequency regions [13, 20]
with the trade off of temporal resolution. Recently proposed
countermeasures for ASV spoofing based on CQCC [22, 23, 24]
provides a higher frequency resolution at low frequencies and
higher temporal resolution at higher frequencies but it lacks in
capturing instantaneous spectral changes within analysis block
at lower frequencies. In block processing, the characteristics
of low SNR instances will get averaged because of high SNR
instants present in that block. Our intuition is that a feature
representation that can capture instantaneous spectral changes
with high spectral and temporal resolution may be a possible
solution for replay attack detection. Motivated with this, in this
paper we investigated the single frequency filtering (SFF) [25]
method of speech analysis, which provides high spectral and
temporal resolution. A new feature is proposed by perform-
ing cepstral analysis on SFF spectrum to capture instantaneous
spectral changes, this feature is named as single frequency fil-
tering cepstral coefficients (SFFCC). In this study, The SFFCC
along with Gaussian mixture model is used as a countermeasure
for replay attacks.

The remainder of the paper is organized as follows. Section
2 describes the prior works on BTAS 2016 corpus. In Section 3,
extraction of SFFCC features is presented. Section 4 describes
the experimental setup. In Section 5, results and discussion are
presented. Finally, Section 6 provides the conclusions.



2. Prior Works
This section briefly reviews the spoofing countermeasures pro-
vided by other researchers on BTAS 2016 corpus. In BTAS
2016 speaker anti-spoofing challenge [20], four teams have
submitted their results. The baseline system provided in the
challenge uses simple spectrogram based ratios as features and
logistic regression as a classifier. The submission by CPqD
team used two types of cepstral coefficients as features and
deep neural networks (DNNs) as a classifier. CPqD team
also used ASVspoof [6] data to enhance the system perfor-
mance. The submission by SJTUSpeech team used cepstral
mean-variance normalization (CMVN) with normalized per-
ceptual linear predictive (PLP) features. This team used two
classifiers, a seven layer DNN and four layer bidirectional long
short-term (BLSTM). The submission by Idiap team used long-
term spectral mean and standard deviation as features. The fea-
ture vectors are classified using a linear discriminant analysis
(LDA) classifier. The submission by IITKGP-ABSP team is
based on score level fusion of mel frequency cepstral coeffi-
cients (MFCCs) and IMFCCs using a standard Gaussian mix-
ture model (GMM) classifier. Most of these studies use block
processing with different frame sizes (20 - 40 ms) and a com-
mon frame shift of 10 ms. Recently in [22, 23], the CQCC
features are investigated on BTAS 2016 corpus. From the study
[22], it was found that that static CQCC features are performing
well on BTAS 2016 corpus, the results are reported in terms of
equal error rate (EER). In [23], authors used CQCC static fea-
tures appended with delta and accelerated coefficients as fea-
tures and the results are reported in terms of half total error
rate (HTER) as per the challenge convention. These two stud-
ies [22, 23] used GMM as a classifier. To the best of authors
knowledge, the result reported in [23] is the state of the art on
BTAS 2016 corpus.

3. Extraction of SFFCC Features
In this study, the features are extracted from recently proposed
single frequency filtering (SFF) [25] method of speech analy-
sis. The main objective of SFF is to compute the amplitude
envelope of the signal as a function of time. The spectral and
temporal resolutions can be adjusted by varying the parameter
r, which represents the pole location. Cepstral features are ex-
tracted from the SFF envelopes. The block diagram of SFFCC
extraction is described in Figure 1. The steps involved in the
extraction of SFFCC is as follows [26].

1. Pre-emphasis the input speech signal s[n] to remove any
low frequency components introduced during recording.

x[n] = s[n]− s[n− 1] (1)

where n ranges from 1 to N, N is total number of samples
in the signal.

2. The signal (x[n]) is multiplied with a complex sinu-
soidal ejw̄kn, where w̄k = π−wk = π− 2πfk

fs
, in-order

to shift the frequency spectrum X(w) of the signal x[n].
The resulting frequency shifted signal is represented by
x[k,n], where x[k,n] is

x[k, n] = x[n]ejw̄kn (2)
where k ranges from 0 to K, K is fs/2.

3. The frequency shifted signal x[k,n] is passed through a
single-pole filter whose transfer function is H(z), where

H(z) =
1

1 + rz−1
(3)

The root at z = −r in the z-plane is set such that it
corresponds to fs/2. For filter to be stable, the location
of pole should be near to unit circle. In this study r value
is chosen as 0.995.

4. The output y[k, n] of the filter is given by

y[k, n] = −ry[k, n− 1] + x[k, n] (4)

5. The amplitude envelope of the signal y[k, n] is given by

v[k, n] =
√
Re(y[k, n])2 + Im(y[k, n])2 (5)

where Re, Im represents the real and imaginary parts re-
spectively. The term v[k,n] corresponds to the SFF en-
velope of the signal at a desired frequency fk. The mag-
nitude spectrum can be obtained from SFF envelope for
each instant of n.

6. Cepstrum c[k,n] is computed from SFF spectrum v[k,n]
as follows

c[k, n] = IFFT (log(v[k, n])) (6)

From c[k,n], first few cepstral coefficients (p) are consid-
ered. In this study, they are named as SFFCC.

4. Experimental Setup
4.1. Database
In this study, BTAS 2016 corpus [20] is considered, which is a
subset of AVspoof 1 [27]. This corpus contains three nonover-
lapping subsets: train, development, and test. Each subset is
further divided into two main parts: (i) genuine data, (ii) dif-
ferent replay attacks. Training and development data contains
the similar type of attacks and in the test data, there are two un-
known attacks. The number of utterances in each type of attack
is given in Table 1. Detailed information of the database can be
found in [20].

Table 1: Description of BTAS 2016 Corpus. RE stands for re-
play. LP for laptop, HQ means high quality speakers used dur-
ing replay, PH1 is samsung Galaxy S4 phone, PH2 is iphone
3GS. PH3 is iphone 6S, VC means voice conversion and SS
means speech synthesis.

Data type # Train # Dev # Test
Genuine 4973 4995 5576

RE-LP-LP R1 700 700 800
RE-LP-HQ-LP R2 700 700 800

RE-PH1-LP R3 700 700 800
RE-PH2-LP R4 700 700 800
SS-LP-LP R5 490 490 560

SS-LP-HQ-LP R6 490 490 560
VC-LP-LP R7 17400 17400 19500

VC-LP-HQ-LP R8 17400 17400 19500
RE-PH2-PH3 R9 - - 800

RE-LPPH2-PH3 R10 - - 800
All attacks 38580 38580 44920

4.2. Parameters used for Feature Extraction
The amplitude envelope of the signal can be computed at any
frequency fk using SFF. In this study, 513 frequencies are con-
sidered within the frequency range of 0 to fs/2 , where fs =
16000 Hz with the spacing of 15.6 Hz. The SFFCC can be ob-
tained at each time instant. In this study, instead of computing
at each instant, we computed the SFFCC at selected instants as
described below.

1https://www.idiap.ch/dataset/avspoof



Figure 1: Block diagram of single frequency filter cepstral coefficients extraction.

From each 10 ms segment, one instant is considered. This
process is named as sub-sampling as shown in Figure 1 (as it
is an optional step, dotted lines are used as borders). In this
study, the choice of instants for SFFCC extraction are selected
based on instantaneous energy. The sum of all the values across
frequency in v[k,n] will give instantaneous energy. The instan-
taneous energy for a speech segment (Figure 2 (a)) is shown
in Figure 2 (c). The equation for instantaneous energy E[n] is
given below [28],

E[n] =

K∑
k=0

v[k, n]. (7)

Three variants of instants were chosen for every 10 ms.
They are: (i) At each 10 ms instant, (ii) Lowest energy (low
SNR) sample in each 10 ms segment, and (iii) Highest energy
(high SNR) sample in each 10 ms segment. The low and high
SNR samples are selected by tracing the instantaneous energy at
which there is low amplitude and high amplitude, respectively.
These three variants of samples are shown in Figure 2 (c) as
“|” ,“�”, and “∗” respectively. From Figure 2 (b) and 2(c) we
can correlate the peaks in E[n] with vertical lines (corresponds
to glottal closure instants [26]) in spectrogram which represents
high SNR regions. It can also be observed that the selected
low SNR instants represent the low SNR regions in the spec-
trogram. Cepstral coefficients are computed from these three
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Figure 2: (a) A segment of speech signal (b) SFF spectrogram of
(a). (c) Instantaneous energy of (a) with marked 10 ms instants
(|), low (�) and high (∗) SNR samples for each 10 ms segment.

variants separately. The three variants of SFFCC are explained
below by considering the jth speech segment. The instanta-
neous energy for jth speech segment is represented by Ej [n].

• SFFCC10ms: In this, the cepstral coefficients are ob-
tained for the integral multiples of 10 ms instants.

• SFFCCmin: In this, the cepstral coefficients are com-
puted at the low SNR instants within 10 ms segment.
The low SNR instant for each segment is represented by
l. where l is

lj = arg min
i
Ej [i] (8)

• SFFCCmax: In this, the cepstral coefficients are com-
puted at the high SNR instants within 10 ms segment.
The high SNR index for each segment is represented by
l. where l is

lj = arg max
i
Ej [i] (9)

In this study, different dimensional cepstral coefficients (p
= 13, 20 and 30) are considered. From static (S) coefficients,
delta (D) and double-delta (A) coefficients are computed. Ex-
periments are performed with different combinations of static
and dynamic coefficients.

4.3. Classifier
In this study, GMM is used as a classifier. After the feature ex-
traction, two GMMs are built for each genuine (λg) and spoof
(λs) with 512 mixture components. GMM parameters are esti-
mated with expectation and maximization (EM) algorithm

The log-likelihood score is computed with the following
equation,

Score(X) = llk(X|λg)− llk(X|λs) (10)

where X = {x1, x2,. . ., xT } is the feature vector of test utter-
ance, T is the number of sub-sampling instances. where,

llk(X|λ) = (1/T )

T∑
t=1

logp(xt/λ) (11)

is the average likelihood of X given model λ.

4.4. Evaluation Metrics
The evaluation metrics were considered according to the proto-
col used in BTAS 2016 speaker anti-spoofing challenge. The
results on development data are reported in terms of EER and
on the test data in terms of HTER. As the studies in [22] used
EER as a metric on both development and test data, EER values
are computed for test data. All the EER values were computed
with BOSARIS toolkit [29].

5. Results and Discussion
Initial studies are conducted on BTAS test data by using the
three variants of SFFCC. The results are reported in Table 2.

Table 2: Evaluation results (EER in %) for BTAS 2016 test data
set using different variations of SFFCC.

Feature SFFCC10ms SFFCCmin SFFCCmax
EER 1.02 0.07 1.14

From the results in Table 2, it is evident that SFFCCmin
is performing better than other two variants. These results
suggest us that, SFFCCmin which are extracted from low
SNR instants is capturing the channel variations effectively than
the SFFCCmax and SFFCC10ms, which are extracted from
high SNR instants and for each 10 ms instants respectively. Fur-
ther experiments are conducted with different feature dimen-
sions of SFFCCmin, the results are reported in Table 3.

Table 3: Evaluation results (EER in %) for BTAS 2016 test data
set using different dimensions of SFFCCmin. SDA refers to
static appended with dynamic coefficients

Feature 13-SDA 20-SDA 30-SDA
SFFCCmin 0.11 0.09 0.07



Table 4: Individual attack results (in % HTER) of different systems on BTAS test data set.
Known attacks Unknown attacks All attacks

System R1 R2 R3 R4 R5 R6 R7 R8 Pool R9 R10 Pool Pool
SJTUSpeech [20] 10.34 10.02 1.52 2.05 1.88 1.75 1.73 1.81 2.08 2.84 18.09 10.46 2.20

Idiap [20] 15.83 0.58 0.33 25.18 0.27 0.27 0.33 0.27 1.05 50.08 46.64 48.36 2.04
IITKGP-ABSP [20] 8.58 1.81 0.68 3.59 0.68 0.68 0.74 0.81 0.98 6.49 23.06 14.75 1.26

CQCC-SDA [23] 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 23.92 12.10 0.67
SFFCC-SDA 0.16 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.53 0.29 0.05
SFFCC-DA 14.56 5.46 48.01 51.41 3.20 3.20 3.01 3.01 5.11 48.12 19.36 33.74 5.96
SFFCC-S 0.01 0.06 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 1.19 0.60 0.0002

Table 5: Individual attack results (in % EER) for CQCC and SFFCC features on BTAS test data set.
Known attacks Unknown attacks All attacks

System R1 R2 R3 R4 R5 R6 R7 R8 Avg R9 R10 Avg Avg
CQCC-S[22] 0 0.04 0 0 0 0 0 0 0.005 7.56 0 3.78 0.76
SFFCC-SDA 0.17 0.06 0 0 0 0 0 0 0.029 0.04 0.48 0.26 0.07
SFFCC-DA 11.88 5.25 39.10 47.31 1.76 1.28 0.19 0.24 13.37 47.73 19.17 33.45 17.39
SFFCC-S 0.01 0.02 0 0 0 0 0 0 0.004 0.01 0.44 0.23 0.05

From the results in Table 3, 30-SDA features are perform-
ing better than the lower dimensional coefficients (13-SDA, 20-
SDA). These results suggest us that, higher order coefficients
are useful in spoof detection. In the rest of the paper, exper-
iments will be conducted with 30 dimensional SFFCCmin.
From here onwards the terms SFFCCmin and SFFCC are
used interchangeably.

The proposed system results are compared with the top five
performing systems reported in the literature on BTAS 2016
corpus [20]. The results of SJTUSpeech, Idiap, and IITKGP-
ABSP systems are taken from BTAS speaker anti-spoofing
challenge [20]. CQCC-SDA system is taken from [23] and
CQCC-S from [22]. Our proposed feature with different combi-
nations of static and dynamic coefficients are used in this study.
The evaluation results in terms of EER on development data and
in terms of HTER on test data are reported in Table 6. From
Table 6: Evaluation results (error rates in %) of different sys-
tems on BTAS 2016 development and test data sets.

System Developmet (EER) Test (HTER)
SJTUSpeech[20] 0.42 2.20

Idiap[20] 0 2.04
IITKGP-ABSP[20] 0 1.26

CQCC-SDA[23] 0 0.67
CQCC-S[22] 0 -
SFFCC-SDA 0 0.05
SFFCC-DA 3.72 5.96
SFFCC-S 0 0.0002

the results in Table 6, it can be observed that many of the sys-
tems are perfectly tuned to development data (column 2 Devel-
opment (EER)) by attaining an EER of 0 but the results on test
data (column 3 Test (HTER)) are varying across systems. Fur-
ther analysis is carried out on test data and the individual attack
results are reported in Table 4. From the results in Table 4, it
can be seen that some of the systems are performing better on
specific attacks, for example, Idiap system is performing better
for some of the known attacks such as R5, R6, and R8, but it
is performing poorly on unknown attacks R9 and R10. CQCC-
SDA system is relatively performing better than all the three
systems reported in [20]. While dealing with unknown attacks,
CQCC-SDA is successful with R9 but it is poorly detecting the
R10. The success of CQCC-SDA is because of its unique prop-
erty of high spectral resolution at lower frequencies and high
temporal resolution at higher frequencies. Static SFFCC based
system is the best performing system for many of attacks except
for R2 and R10. SFFCC-SDA system is detecting R2 and R10
attacks more accurately than the SFFCC-S based system. From

the pooled results of known and unknown attacks, it can be seen
that for known attacks, SFFCC-S has achieved pooled HTER of
0.01 which is better than the CQCC-SDA based system by a
large margin and four times better than the SFFCC-SDA based
system. Whereas in the case of unknown attacks SFFCC-SDA
system is best performing than the CQCC-SDA based system
and SFFCC-S based system.

Similar to the studies in [22], threshold-free EER is com-
puted for test data and the individual attack results are reported
in Table 5. From the results in Table 5, the CQCC-S system per-
formed well in many attacks in test data set, for R1 and R10 the
CQCC-S system is performing better than the proposed SFFCC
based system but in the case of R9 which is an unknown at-
tack, it is not performing well. Whereas proposed system has a
low error rate in this case. The overall performance of proposed
system is more superior than a CQCC-S system.

From the results reported on SFFCC-DA based system in
Table 4 and Table 5, it can be observed that the dynamic coef-
ficients alone are unable to detect the replay attacks efficiently,
whereas relatively they are detecting VC and SS based replay
attacks (R5 - R8) than the direct replay attacks. The reason
for the success of dynamic coefficients in detecting VC and SS
based attacks may be because many synthetic speech generating
techniques do not use long-term dynamics of speech effectively.
Even though static features are able to detect known attacks effi-
ciently, for generalization it is better to use static appended with
dynamic coefficients

6. Summary and Conclusions
In this paper, a new feature based on single frequency filtering
(SFF) method of speech analysis is proposed for replay attack
detection. Cepstral features extracted from low SNR instants
of SFF spectrum for each 10 ms segments are more useful than
the features extracted from high SNR and 10 ms instants for
replay attack detection. Experimental results on BTAS 2016
corpus shows that the proposed system outperforms the state of
the art CQCC system with a significant margin. Based on these
encouraging results on replay attacks, in future, the proposed
features can be explored on other attacks such as VC and SS
inorder to provide a generalized solution for spoofing attacks.
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