
STIC-D : Algorithmic Techniques For Efficient Parallel Pagerank

Computation on Real-World Graphs

by

Paritosh Garg, Kishore Kothapalli

in

International Conference on Distributed Computing and Networking (ICDCN 2016)

Report No: IIIT/TR/2016/-1

Centre for Security, Theory and Algorithms
International Institute of Information Technology

Hyderabad - 500 032, INDIA
January 2016

STIC-D : Algorithmic Techniques For Efficient Parallel
Pagerank Computation on Real-World Graphs

Paritosh Garg
International Institute of Information Technology,

Hyderabad
Gachibowli, Hyderabad, India 500 032
paritosh.garg@students.iiit.ac.in

Kishore Kothapalli
International Institute of Information Technology,

Hyderabad
Gachibowli, Hyderabad, India 500 032

kkishore@iiit.ac.in

ABSTRACT
Computing metrics on nodes of a graph is an essential step
in understanding the properties of the graph. Pagerank is
one such metric that is popular and is being used to measure
the importance of nodes in not only web graphs but also in
social networks, biological networks, road networks, and the
like. The core of the computation of pagerank can be seen as
an iterative approach that updates the pageranks of nodes
until the values converge.

However, as real-world graphs such as road networks and
the web have a large size, one needs to design efficient tech-
niques to address the challenges of scale. In addition to
parallelism that can be exploited, it is important to also
look for specific properties of graphs and their impact on
the algorithm.

In this paper, we present four algorithmic techniques that
optimize the pagerank computation on real-world graphs.
The techniques are presented with the aim of exploiting the
nature of the real-world graphs and eliminating redundan-
cies in the pagerank computation. Our techniques also have
the advantage that with little extra effort one can quickly
identify which of the techniques will be suitable for a given
input graph.

We implement our algorithm on an Intel i7 980x CPU
running 12 threads using OpenMP Version 3.0. We study
our techniques on four classes of real-world graphs: web
graphs, social networks, citation and collaboration networks,
and road networks. Our implementation achieves an average
speedup of 32% compared to a baseline implementation.

CCS Concepts
•Computing methodologies → Parallel algorithms;

Keywords
Pagerank; Real-World Graphs; Algorithmic Optimizations;
Parallel Computing; Strongly Connected Components

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICDCN ’16, January 04-07, 2016, Singapore, Singapore
c© 2015 ACM. ISBN 978-1-4503-4032-8/16/01. . . $15.00

DOI: http://dx.doi.org/10.1145/2833312.2833322

1. INTRODUCTION
Pagerank computation introduced by Brin and Page [22]

is considered to be a fundamental advancement in the de-
velopment of search and related technologies. Informally,
the pagerank computation assigns a rank to every webpage
where the rank indicates the importance of a web page.
Pagerank type metrics have since become popular and are
used in evaluating the relative importance of nodes in other
classes of networks including social networks, citation net-
works, biological networks, road networks, and the like [17].
It is therefore not surprising that there has been a lot of
research interest in the past decade on pagerank computa-
tion [11,14,19,20,24,28], to mention a few.

The pagerank computation proceeds in iterations and in
each iteration the current pagerank of each node is updated
by using the pagerank of its incoming neighbors. The com-
putation stops when the pagerank values at all nodes change
only by a small value across successive iterations. In each
iteration, along each directed edge e = (u, v), a fraction of
the pagerank value of u is transferred to the new pagerank
value of v. This computation offers opportunities for opti-
mization where certain edges of the graph can be identified
as redundant for one or more iterations. These optimizations
can be achieved by a deeper understanding of the structure
of popular real-world graph classes such as web graphs, road
networks, and citation networks.

There have been a number of works on parallel algorithms
to compute the pagerank of nodes in a graph. However,
some of the techniques are directed only towards web graphs
e.g., [4, 14, 19] and may not translate to other real-world
graphs. With pagerank being used for other purposes be-
yond its original intent [17], it is important to have an effi-
cient algorithm for pagerank computation for several classes
of real-world graphs.

It is to be noted that as real-world graphs increase in
size, several scalability issues come to the fore in the pro-
cess of algorithm design and implementation. Exploiting
the parallelism in the computation provides only a limited
succor. Hence, one needs to deploy efficient techniques to
address the scalability issue arising out of the large sizes of
the real-world graphs. Such a line of investigation has been
pursued recently in finding the strongly connected compo-
nents by Olukotun et al. [18], graph traversals and shortest
paths [6, 7], graph connectivity [12, 26], and the like on a
variety of multicore and heterogeneous execution platforms.

In this paper, we present techniques to identify and elim-
inate the redundancies in the pagerank computation. We
name our techniques with the acronym STIC-D for SCC

and Topological Ordering, Identical Nodes, Chain Nodes,
and Dead Nodes. The first technique makes use of the ob-
servation that sparse directed graphs tend to have a large
number of strongly connected components (SCCs). Further,
we observe that the block graph of a graph plays a big role
in how the pagerank values of nodes converge to their final
values. We call this technique as SCC and Topological Or-
der. Our second technique, called Identical Nodes is based
on identifying nodes with an identical incoming neighbour-
hood. It can be observed that such nodes have an identi-
cal pagerank value, hence the computation can be done for
only one of the nodes in every class of identical nodes. Our
third technique, called Chain Nodes is based on the fact that
one can shortcut nodes along paths as their contribution to
the computation of pagerank can be captured by a succinct
formula. We also introduce a fourth technique based on ap-
proximation, called Dead Nodes, that involves retiring nodes
that do not have a big change across iterations.

While each of the above techniques are simple, there are
additional challenges we address to translate these tech-
niques to efficient algorithms. Note that the pagerank com-
putation itself has near-linear work in practice. For most
real-world graphs of varying sizes, the number of iterations
required for the pagerank computation to converge is usu-
ally less than 100. This means that the preprocessing time
and any post-processing time required as part of the pro-
posed optimizations have to be very light-weight so as not
to offset the gains accrued from the proposed optimizations.
Further, it is likely that a specific subset of the above tech-
niques will be appropriate for a given graph. As we aim for
techniques that are general-purpose, one also needs to have
fast, simple, and effective mechanisms that can identify the
applicable techniques for a given graph.

To validate our techniques, we consider four types of real-
world graph classes: web graphs, social networks, citation
and collaboration networks, and road networks, and show
that our techniques can improve the computation of pager-
ank by a factor of 32% on average.

1.1 Motivation
One of the key motivations of our work is to understand

the structural properties of real-world graphs and their im-
pact on algorithms. Specific to the computation of pagerank,
we seek properties that can allow us to reduce the number of
computations that are invoked for each node of the graph.
In this direction, we first note that real world graphs be-
ing sparse in nature tend to have several strongly connected
components (SCCs). Figure 1 shows evidence for the same
for some real-world graphs. As can be noticed from Figure
1, real-world graphs have a large number of SCCs with a
small size, and very few SCCs of a large size. This property
indicates that a decomposition based on SCCs can be useful
in parallel algorithms for pagerank computation. (See also
Table 1.)

Now, consider two SCCs H1 and H2 of a graph G such
that nodes in H2 have some incoming edges from nodes in
H1. It can be noticed that nodes in H2 can start computing
the pagerank only after nodes in H1 have converged to their
final pagerank value. This property establishes a topological
order in which the SCCs of G can be processed during the
pagerank computation. Further, once nodes in H1 converge
to their final pagerank values, their contribution to nodes in
H2 does not change across iterations of the pagerank com-

putation for nodes in H2. These observations form the basis
of two of our techniques.

Other structural properties of real-world graphs that we
make use of in this work include identifying nodes with iden-
tical incoming neighborhoods and also nodes that lie on
long directed paths. We show in the subsequent sections
that these structural properties offer good reduction in the
amount of computation required to arrive at the pagerank
values of nodes in a graph.

1.2 Related work
Computing metrics on graphs in parallel has been wit-

nessing a renewed interest in recent years. In the context
of pagerank, Broder et al. [10] characterized the structure
of web graphs as having a bow-tie nature with one large
strongly connected component that also has a large num-
ber of incoming and outgoing edges. Arasu et al. [4] use
the characterization of Broder et al. [10] and represent the
pagerank computation as solving a set of independent ma-
trix equations on a block upper triangular matrix. Kamvar
et al. [19] extend the characterization from Broder et al. [10]
to partition the input graph into blocks where a block cor-
responds to a collection of nodes that are also physically
related in the context of a web graph by being in the same
domain. They proceed to compute a page rank within each
block, called the local pagerank, a pagerank for the blocks
called as BlockRank, and finally the global pageranks using
the local pageranks and the BlockRanks. It is to be noted
however that the final ranks computed by Kamvar et al. [19]
are approximate ranks and can differ from the pagerank val-
ues as computed without using the block structure of the
graph.

Similar approximation based approaches can be seen in
the work of SiteRank by Wu and Aberer [28], the U-Model
work of Broder et al. [11], the ServerRank work of Wang
et al. [27], and the HostRank/DirRank work of Eiron et
al. [15]. Kohlschutter et al. [20] extend the results of Kam-
var et al. [19] to obtain exact pageranks. But one limitation
of these works [15, 19, 20, 27, 28] is that their algorithms are
tailored for web graphs and may not work well for general
purpose graphs. As pagerank and related computations gain
prominence in other domains, generic techniques are of in-
terest.

Parallel computation of pagerank on other emerging ar-
chitectures such as GPUs has been studied by Duong et
al. [14]. The work of [14] does not introduce any algorith-
mic optimizations in the computation of pagerank. On the
other hand, we believe that our algorithmic techniques will
be applicable to other architectures too.

Some of the techniques that we propose are found to be
relevant in computing centrality metrics on graphs. For in-
stance, Sariyuce et al. [25] use graph decomposition into bi-
connected components, removing identical nodes and nodes
of degree one, to compute the betweenness-centrality mea-
sure of nodes in a graph.

Expressing the pagerank computation as a Markov chain
and solving for the steady state transition probabilities of
the underlying Markov chain is a mechanism used by many
authors. Pandurangan et al. study such an approach in the
distributed setting [24].

1.3 Organization of the Paper
The rest of the paper is organized as follows. In Section

10 1
10 2

10 3
10 4

10 5
10 6

Size

10-1

100

101

102

103

104

105
#
S
cc

(a) web-BerkStan

10 1
10 2

10 3
10 4

10 5
10 6

10 7

Size

10-1

100

101

102

103

104

105

106

#
S
cc

(b) soc-LiveJournal1

10 0
10 1

10 2
10 3

10 4
10 5

10 6

Size

10-1

100

101

102

103

104

105

#
S
cc

(c) coPapersDBLP

10 1
10 2

10 3
10 4

10 5
10 6

10 7

Size

10-1

100

101

102

103

104

105

106

#
S
cc

(d) italy osm

Figure 1: Histogram of SCCs vs their sizes for four graphs. The X-axis show the size of SCCs and the Y-axis
shows the number of SCCs. Note that the Y-axis is in logarithmic scale.

2, we give an algorithmic background for pagerank. We
present the baseline algorithm in Section 2.1. In Section 3,
we present the algorithmic techniques. Section 3.6 covers
the implementation details of the algorithm. Experimental
results are presented in 4. Section 5 concludes the paper
and also identifies directions for further work.

2. PRELIMINARIES
Let G = (V,E) be a directed graph with n = |V | vertices

and m = |E| edges. Let IN(u) denote the set of nodes
that have an incoming edge to u. Let outdeg(u) denote the
number of edges from u to other nodes. The pagerank of a
node u, denoted pr(u), is then given as follows.

pr(u) =
∑

v∈IN(u)

contribution(v → u) +
d

n
(1)

In Equation 1, d is called the damping constant and has
its genesis in the manner in which pagerank is usually inter-
preted. The pagerank values represent a probability distri-
bution where the pagerank of a node denotes the probability
of a random walk to visit that node. The damping constant
d can be interpreted as the probability that the random walk
stays at the same node in the next step. The value of d is
taken to be 0.15 usually. The quantity contribution(v → u)
is defined as follows.

contribution(v → u) = (1− d) · pr(v)

outdeg(v)
(2)

One can also combine Equations 1,2 to arrive at the fol-
lowing simplified equation.

pr(u) = (1− d) ∗
∑

v∈IN(u)

pr(v)

outdeg(v)
+

d

n
(3)

Using this formula, we get a pagerank distribution of nodes
of a graph. However this formula is cyclic in nature as two
nodes can make contributions to each other if they are part
of a directed cycle. One way to resolve this dependency is
to apply the formula from Equation 3 iteratively over all the

nodes until the pagerank values converge. We say that the
pagerank values of nodes have converged when there is very
little change in their values across an iteration. This can be
measured by a function such as the maximum difference of
pagerank values or the total difference of pagerank values
across an iteration.

2.1 Baseline Algorithm
Algorithm 1 translates Equation 3 into an iterative pager-

ank computation. We refer to Algorithm 1 as the baseline
algorithm against which we compare our techniques.

Algorithm 1 Base Pagerank(G)

1: procedure Main(Graph G = (V,E), Array outdeg)
2: pr=Compute((V,E), outdeg)
3: return pr
4: end procedure
5:
6: procedure Compute(Graph G,Array outdeg)
7: error =∞
8: for all u ∈ V do
9: prev(u) = d

n
10: end for
11: while error > threshold1 do
12: for all u ∈ V in parallel do
13: pr(u) = d

n
14: for all v ∈ V such that (v, u) ∈ E do

15: pr(u) = pr(u) +
prev(v)

outdeg(v)
∗ (1− d)

16: end for
17: end for
18: for all u ∈ V do
19: error = max(error, abs(prev[u]− pr[u]))
20: prev(u) = pr(u)
21: end for
22: end while
23: return pr
24: end procedure

We initialize the error as ∞ and the initial pagerank val-
ues of all nodes to d

n
. For reasons of efficiency of parallel

computation of pagerank, in Algorithm 1, for each node u,
the new pagerank value of u is computed as the sum of con-
tributions from the incoming neighbors of u. The variable
Threshold1 is a constant that reflects the accuracy of the
pagerank needed by an application.

Lines 12–17 iterate over all the nodes in parallel. Each
node updates its pagerank based on the contributions of its
incoming edges. Lines 18–21 calculate the error function
as the L1 norm of the change in the pagerank values of
nodes across one iteration. The variable error is used to
decide whether to proceed for the next iteration or declare
convergence.

3. OUR ALGORITHMIC TECHNIQUES
In this section, we describe our algorithmic techniques

that help speedup the pagerank computation by eliminat-
ing redundancies. The acronym STIC stands for our tech-
niques based on SCCs and Topological Ordering, Identical
Nodes, and Chain Nodes. In brief, the SCCs and Topolog-
ical Ordering breaks the pagerank computation into com-
putations on smaller subgraphs that are strongly connected
and processed in a particular order. The Identical Nodes op-
timization refers to eliminating the redundant computation
for nodes with an identical incoming neighborhood. The
Chain Nodes optimization shortcuts directed paths by a di-
rected edge that connects the end points of the path. More
details of these optimizations are presented in the following
sections.

3.1 SCC and Topological Ordering
Recall from Equation 3 that in an iterative computation

pagerank values of nodes depend cyclically on one another.
It is also to be observed that if the pagerank value of all
incoming neighbors of a node v converge, then the pager-
ank value of v will also converge by the next iteration. This
observation can be extended to a decomposition of a di-
rected graph into its strongly connected components. For
a directed graph G = (V,E), a maximal subset of vertices
U ⊆ V such that every pair of nodes in U have at least one
directed path between them is said to be a strongly con-
nected component (SCC) (cf [13]). One can also define the
block graph H of G where H has one node for each SCC of
G. For two nodes u, v ∈ H, there is an edge from u to v if
and only if there exist vertices a and b in the corresponding
SCCs Cu and Cv of G such that the edge (a, b) ∈ E(G). The
graph H is directed as defined and is also acyclic.

It can be noted that in a topological sort of the nodes of H,
if a node v ∈ V (H) comes after a node u ∈ V (H), then nodes
in the SCC Cv cannot contribute to the pagerank values
of nodes in the SCC Cu. Viewed differently, the pagerank
computation will benefit if we start processing nodes in Cv

after the nodes in all SCCs that have an incoming edge to
v ∈ H converge.

Our SCC and Topological Ordering technique uses the
above observations as follows. In a preprocessing step, we
find the SCCs of the input graph G and perform a topo-
logical sort of the block graph H of G. This results in an
ordering of the SCCs of G as C1, C2, · · · so that the pagerank
values can be computed for C1, followed by C2, and so on.

Let us call edges that have end points in different SCCs
as cross edges. Figure 2 illustrates the above ideas. In Fig-
ure 2, cross edges are shown as dashed lines. As Figure
2(b) shows, there are three levels in the topological order of

Figure 2: The SCCs of a graph and our processing
order.

the block graph of the graph in Figure 2(a). We can com-
pute the pageranks of nodes in component C1, followed by
components C2 and C3 in Level 2 in parallel, and finally
component C4 in Level 3.

There is one additional redundant computation that can
be identified as we compute pageranks according to a topo-
logical order of nodes in the block graph. Consider a node
a ∈ V (G) that appears in SCC C of G such that the node
u ∈ V (H) corresponding to C has a rank of r in a topo-
logical sort of H. Node a may have incoming neighbors in
SCCs with a rank strictly less than r. In our scheme, the
pagerank value of such nodes would have already been com-
puted as we process the nodes in component C. Therefore,
in the pagerank computation of node a, the contribution of
incoming neighbors of a in components with rank strictly
less than r does not change across iterations. Hence, the
computation corresponding to such cross edges need be per-
formed only once. In other words, the pagerank of nodes in
SCC C can be initialized to the sum of their contributions
from incoming neighbors from SCCs with a strictly smaller
rank than the rank of C.

3.2 Identical Nodes
In this optimization, we notice that the pagerank of a node

is completely dependent on its incoming neighbors. So, it
follows that two nodes that have identical incoming neigh-
bors would also have the same pagerank value. Indeed, such
is the case at the end of each iteration also. We therefore
call two nodes as identical if they have the same set of in-
coming neighbors. The notion of identical nodes allows one
to compute the pagerank of one representative node in every
class of identical nodes. The pagerank value of the repre-
sentative node for each class is referred to by all the nodes
in that class when they need the pagerank value.

We illustrate the above in Figure 3 where nodes a, b and
c have u and v as common neighbors. Notice also any two
nodes that are identical will always belong to the same SCC
or will be in an SCC of size one. This helps in the imple-
mentation since it will be easy to all identical nodes will be
processed along with the component.

3.3 Chain Nodes
This algorithmic optimization concerns nodes along di-

rected paths. On a directed path P = 〈u = u0, u1, u2, · · · , uk =
v〉, notice that nodes ui with 1 ≤ i < k have exactly one in-
coming and one outgoing node. Similar to the pagerank

