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Abstract

Binarization is an extreme network compression approach
that provides large computational speedups along with en-
ergy and memory savings, albeit at significant accuracy
costs. We investigate the question of where to binarize in-
puts at layer-level granularity and show that selectively bi-
narizing the inputs to specific layers in the network could
lead to significant improvements in accuracy while preserv-
ing most of the advantages of binarization. We analyze the
binarization tradeoff using a metric that jointly models the
input binarization-error and computational cost and intro-
duce an efficient algorithm to select layers whose inputs are
to be binarized. Practical guidelines based on insights ob-
tained from applying the algorithm to a variety of models
are discussed.
Experiments on Imagenet dataset using AlexNet and
ResNet-18 models show 3-4% improvements in accuracy
over fully binarized networks with minimal impact on com-
pression and computational speed. The improvements are
even more substantial on sketch datasets like TU-Berlin,
where we match state-of-the-art accuracy as well, getting
over 8% increase in accuracies. We further show that our
approach can be applied in tandem with other forms of com-
pression that deal with individual layers or overall model
compression (e.g., SqueezeNets). Unlike previous quantiza-
tion approaches, we are able to binarize the weights in the
last layers of a network, which often have a large number
of parameters, resulting in significant improvement in accu-
racy over fully binarized models.

1. Introduction

Convolutional Neural Networks (CNNs) have found ap-

plications in many vision-related domains ranging from

generic image-understanding for self-driving cars [3] and

automatic image captioning [32, 20] to recognition of spe-

cific image parts for scene-text recognition [24, 26] and

face-based identification [29].

Figure 1: Convolution of binary and non-binary activations

of two different layers. Note that the error introduced due

to binarization is minimal in the first pair compared to the

second. Hence, efficiently deciding which layers to binarize

could contribute significantly to the overall accuracy of the

network and not damage the speed-ups.

After the introduction of AlexNet [21], several architec-

tural improvements were proposed to push image recog-

nition accuracy, such as VGG-Net [28], but these models

were massive both in terms of memory usage and computa-

tional costs. AlexNet has around 60 million parameters in

the network, while VGG has around 138 million, requiring

1.5 billion FLOPs and 19.6 billion FLOPs respectively for

inference. The computational requirements make these ar-

chitectures inappropriate for smaller portable systems such

as mobiles and other embedded systems. These networks

also use large amounts of energy, creating a bottleneck

for performance improvements. Full-precision multiply-

accumulate (MAC) operations in convolutional layers con-

sume 30x more power than integer MAC operations (see

Table 1).

Since these applications would be deployed on resource-

constrained systems, CNN compression is an important
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Operation MUL Power ADD Power
32-bit Float 3.7pJ 18.5x 0.9pJ 30x

16-bit Float 1.1pJ 5.5x 0.4pJ 13.3x

8-bit Integer 0.2pJ 1x 0.03pJ 1x

Table 1: As shown by Horowitz et al. [14], power consump-

tion for various operations at 45nm 0.9V. Observe that 8-bit

integers require significantly less energy than their equiva-

lent 32-bit floating point operations.

emerging area for research on vision applications [18, 36,

11, 23, 25, 31, 13, 19]. One of the methods of compression:

Quantization, can help networks consume far less power,

memory, and incur lower computational costs.

Quantization has proven to be a powerful compres-

sion strategy. Our paper is based on the most extreme

form of quantization - Binarization. There are many ben-

efits to binarizing a network. Primarily, having binary

weights/activations enables us to use xnor and popcount

operations to calculate weighted sums of the inputs to a

layer as compared to full-precision multiply-accumulate op-

erations (MACs). This results in significant computational

speedup compared to other compression techniques. Sec-

ondly, as each binary weight requires only a single bit to

represent, one can achieve drastic reductions in run-time

memory requirements. Previous research [27, 18] shows

that it is possible to perform weight and input binarization

on large networks with up to 58x speedups and 10.4x com-

pression ratios, albeit with significant drops in accuracy.

In this paper, we explore the problem of hybrid binariza-

tion of a network. We propose a technique devised from

our investigation into the question as to where and which
quantities of a network should one binarize, with respect

to inputs to a layer - to the best of our knowledge, this is

the first work that explores this question. We observe in

Figure 1 that in a trained fully binarized model, binariza-

tion in certain layers induces minimal error, whereas in oth-

ers, the error obtained is significant. Our proposed parti-

tion algorithm, when run on trained fully binarized mod-

els can design effective architectures. When these hybrid

models are trained from scratch, they achieve a balance be-

tween compression, speedup, energy-efficiency, and accu-

racy, compared to fully binarized models. We conduct ex-

tensive experiments applying our method to different model

architectures on popular large-scale classification datasets

over different domains. The resulting models achieve sig-

nificant speedups and compression with significant accu-

racy improvements over a fully binarized network.

Our main contribution includes:

1. A metric to jointly optimize binarization-errors of lay-

ers and the associated computational costs;

2. A partitioning algorithm to find suitable layers for in-

put binarization, based on the above metric, which

generates hybrid model architectures which if trained

from scratch, achieve a good balance between com-

pression, speedup, energy-efficiency, and accuracy;

3. Insights into what the algorithm predicts, which can

provide an intuitive framework for understanding why

binarizing certain areas of networks give good bene-

fits;

4. Hybrid model architectures for AlexNet, ResNet-18,

Sketch-A-Net and SqueezeNet with over 5-8% accu-

racy improvements on various datasets; and

5. A demonstration that our technique that achieves sig-

nificant compression in tandem with other compres-

sion methods.

Reproducibility: Our implementation can be found on

GitHub 1.

2. Related Work
CNNs are often over-parametrized with high amounts

of redundancy, increasing memory costs and making com-

putation unnecessarily expensive. Several methods were

proposed to compress networks and eliminate redundancy,

which we summarize below.

Space-efficient architectures: Designing compact ar-

chitectures for deep networks helps save memory and

computational costs. Architectures such as ResNet [13],

DenseNet [17] significantly reduced model size compared

to VGG-Net by proposing a bottleneck structure to reduce

the number of parameters while improving speed and ac-

curacy. SqueezeNet [19] was another model architecture

that achieved AlexNet-level accuracy on ImageNet with 50x

fewer parameters by replacing 3x3 filters with 1x1 filters

and late downsampling in the network. MobileNets [16]

and ShuffleNets [35] used depthwise separable convolu-

tions to create small models, with low accuracy drop on

ImageNet.

Pruning and Quantization: Optimal Brain Damage [8]

and Optimal Brain Surgeon [12] used the Hessian of the

loss function to prune a network by reducing the number of

connections. Deep Compression [11] reduced the number

of parameters by an order of magnitude in several state-

of-the-art neural networks through pruning. It further re-

duced non-runtime memory by employing trained quantiza-

tion and Huffman coding. Network Slimming [23] took ad-

vantage of channel-level sparsity in networks, by identify-

ing and pruning out non-contributing channels during train-

ing. HashedNets [5] performed binning of network weights

using hash functions. INQ [2] used low-precision 16 bit-

quantized weights and achieved an 8x reduction in memory

consumption, using 4 bits to represent 16 distinct quantized

values and 1 bit to represent zeros specifically.

1https://github.com/erilyth/HybridBinaryNetworks-WACV18
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Binarization: BinaryConnect [6] obtained huge com-

pression in CNNs where all weights had only two allowed

states (+1, -1) using Expectation Back Propagation (EBP).

Approaches like [18, 22, 37] train deep neural networks

using low precision multiplications, bringing down mem-

ory required drastically, showing that these models could

be fit on memory constrained devices. DoReFa-net [36]

applied low bit width gradients during back-propagation.

XNOR-Net [27] multiplied binary weights and activations

with scaling constants based on layer norms. QNNs [18] ex-

tended BNNs[7], the first method using binary weights and

inputs to successfully achieve accuracy comparable to their

corresponding 32-bit versions on constrained datasets using

higher bit quantizations. HWGQ-Net [4] introduces a bet-

ter suited activation function for binary networks. HTCBN

[30] introduce helpful techniques such as replacing ReLU

layers with PReLU layers and a scale layer to recover accu-

racy loss on binarizing the last layer, to effectively train a

binary neural network. Hou et al. [15] use Hessian approx-

imations to minimize loss w.r.t binary weights during train-

ing. Anderson et al. [1] offers a theoretical analysis of the

workings of binary networks, in terms of high-dimensional

geometry.

Unlike previous works in this area, we look at binarizing

specific parts of a network, instead of simply binarizing the

inputs to all the layers end-to-end. We see in later sections,

binarizing the right areas in the network contributes signif-

icantly to the overall accuracy of the network and does not

damage its speed-ups.

3. Hybrid Binarization

We define certain conventions to be used throughout the

paper. We define a WBin CNN to be a CNN having the

weights of convolutional layers binarized (referred to as

WeightBinConv layers), FBin CNN to be a CNN having

both inputs and weights of convolutional layers binarized

(referred to as FullBinConv layers) and FPrec CNN to be

the original full-precision network having both weights and

inputs of convolutional layers in full-precision (referred to

as Conv layers). We compare the FBin and WBin networks

with FPrec networks at specific layers.

Table 3 and Table 4 in the Experiments section show test

accuracies for WBin, FBin and FPrec networks of differ-

ent models. Observe that there is very little loss in accu-

racy from FPrec to WBin networks with significant memory

compression and fewer FLOPs. However, as we go from

WBin to FBin networks, there is a significant drop in accu-

racy along with the trade-off of significantly lower FLOPs

in FBin over WBin networks. Hence, we focus on improv-

ing the accuracies of FBin networks along with preserving

the lower FLOPs as far as possible by investigating which

activations to binarize.

3.1. Error Metric: Optimizing Speed & Accuracy

Full-precision inputs I ∈ R
n, are approximated by bi-

nary matrix IB ∈ { − 1,+1}n. The optimal binary repre-

sentation IB is calculated by

IB
∗ = argmin(‖ I− IB ‖2) (1)

XNOR-Net[27] minimized the error function:

E =
‖ I− IB ‖2

n
(2)

In order to do that, they maximized I�IB and proposed the

binary activation IB to be

IB
∗ = argmax

IB

(I�IB), IB ∈ {−1,+1}n, I ∈ R
n (3)

, obtaining the optimal IB
∗ can be shown to be sgn(I).

We need to investigate where to replace FullBinConv

with WeightBinConv layers. In order to optimize for ac-

curacy, we need to measure the efficacy of the binary ap-

proximation for inputs to any given layer. A good metric

of this is the average error function calculated over a subset

of training images E (defined in Eq. 2) used to calculate

the optimal IB itself, which is explicitly being minimized

in the process. Hence, we use that error function to capture

the binarization error.

Similarly to optimize speed, we need to convert layers

with low number of FLOPs to WeightBinConv and lay-

ers having high number of FLOPs should be kept in Full-

BinConv. Since we need to jointly optimize both, we pro-

pose a metric that tries to achieve a good tradeoff between

the two quantities. A simple but effective metric is the linear

combination

M = E+ γ · 1

NF
(4)

where γ is the tradeoff ratio, NF is the number of flops

in the layer and E is the binarization error per neuron. The

trade-off ratio γ is a hyperparameter which ensures that both

the terms are of comparable magnitude. Figure 2, captures

the layer-wise variation of the error metric across multiple

models.

3.2. Partitioning Algorithm

We aim to partition the layers of a network into two parts,

one set of layers to keep FullBinConv and the other set

which are replaced with WeightBinConv layers. A naive

but intuitive partitioning algorithm would be to sort the list

of metric errors M and replace FullBinConv layers which

have highest error values Mi one-by-one with WeightBin-

Conv layers, train new hybrid models and stop when the

accuracies in the retrained models stop improving i.e when

the maxima in accuracy v/s flops tradeoff is reached. How-

ever, we need a partitioning algorithm which gives informed
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Figure 2: Binarization-error metric across layers for Sketch-A-Net, ResNet-18, and SqueezeNet. Stars indicate that the layer

was replaced with a WeightBinConv layer, while squares indicate the FullBinConv layer was retained in the FBin model.

We see that the algorithm selects the last layers in the case of Sketch-A-Net and ResNet, while in the case of SqueezeNet, it

selects the first four, last three and some alternate intermediate layers to be replaced by WeightBinConv layers, retaining the

rest as FullBinConv layers.

guesses on where are the effective places to partition the

set. This would avoid the long retraining times and large

resources required to try every possible option for a hybrid

model. We propose a layer selection algorithm that gives

informed partitions from a trained FBin model, helping us

to determine which layers are to be converted to WeightBin-

Conv and which layers are to be converted to FullBinConv

without having to train all possible hybrid models from

scratch.

Our algorithm starts by taking a trained FBin model. We

pass in a subset of the training images and calculate the av-

erage error metric for all layers over them. Then we per-

form K-Means Clustering on the metric values with each

point being the metric error of layers as shown in Figure 2.

We perform the K-Means Clustering for different values of

the number of clusters. We find a suitable number of clus-

ters such that the ratio of layers in the highest-error cluster

(K) to the total number of convolutional layers (P ) is less

than a hyperparameter, which we define as the Hybridiza-

tion Ratio R. Layers with terms falling in the highest mean

cluster are converted to WeightBinConv, while the ones in

all other clusters are left as FullBinConv. A flow of the

algorithm is illustrated in Figure 3 and is explained step-

by-step in Algorithm 1. We show metric scores of various

layers for different networks in Figure 2 and indicate which

layers are replaced with WeightBinConv/FullBinConv lay-

ers. This algorithm guides in forming the architecture of the

hybrid model, which is then trained from scratch obtaining

the accuracies given in the tables presented in the Experi-

ment section. Note that this algorithm does not change the

configuration of the model; it only converts certain layers to

their binarized versions.

To give an intuition of what the Hybridization ratio R

Algorithm 1 Partition Algorithm
Marks layers for binarization and creates a hybrid network.

1: Inputs⇒Layer-wise Binarization Errors

2:

3: Initialization
4: P = Total convolutional layers

5: R = Hybridization Ratio

6: ToConvert = List()

7:

8: Mark binary layers
9: for N = 2 to P do

10: Compute KMeans with N means

11: K = Number of layers in highest-error cluster

12: if K/P ≤ R then
13: for Q in high-error clusters do
14: ToConvert.add(Q) � Add layer Q

15: Break

16:

17: Create Hybrid Network
18: HybridNet = ()

19: HybridNet.Add(Conv)

20:

21: for N = 2 to P do
22: if N in ToConvert then
23: HybridNet.Add(WeightBinConv)

24: else
25: HybridNet.Add(FullBinConv)

26:

27: Output⇒ HybridNet

means, a low R would indicate we need the number of
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Figure 3: The Procedure: Error metrics from binarization of inputs to the network layers are partitioned into clusters using

K-means. The highest error cluster indicates the inputs that are not binarized to generate the hybrid version.

WeightBinConv layers to be low, ensuring a high asymme-

try between errors in WeightBinConv and FullBinConv lay-

ers, prioritizing saving computational cost. Conversely, a

higher R would prioritize accuracy over computational cost.

R was set to be 0.4 for AlexNet and ResNet-18, and 0.6 for

Squeezenet. Variation with different values of R is further

discussed in the experiments section.

3.3. Impact on Speed and Energy Use

Computational Speedups: Convolutional operations are

computationally expensive. For each convolution opera-

tion between an image I ∈ R
cin×hI×wI and weight W ∈

R
cout×h×w, the number of MAC operations required N are

≈ CinCoutNWNI where NW = wh and NI = wIhI .

According to benchmarks done in XNOR-Net, the current

speedup obtained in these operations is 58x after including

the overhead induced by computing α. Accordingly, in later

sections, we take one FLOP through a layer as equivalent to

58 binary operations when weights and inputs are binarized.

Exploiting filter repetitions: The number of unique con-

volutional binary filters is bounded by the size of the filter

[18]. As most of our intermediate convolutional layers have

3 × 3 filters which only have 29 unique filters, we find that

the percentage of unique filters decreases as we go deeper

into the network. We can exploit this fact to simply prune

filters and use that in calculating speedups for binary net-

works. More details regarding how the speedup was com-

puted is included in the supplementary material.

4. Experiments and Results
We report and compare accuracies, speedups and com-

pression between the FPrec model, different kinds of bi-

narization models (WBin and FBin), and their generated

hybrid versions of the same. We also present a detailed

comparison of our method with several different compres-

sion techniques applied on AlexNet [21], ResNet-18 [13],

Sketch-A-Net [10] and SqueezeNet [19].

We empirically demonstrate the effectiveness of hybrid bi-

narization on several benchmark image and sketch datasets.

We show that our approach is robust and can generalize to

different types of CNN architectures across domains.

4.1. Datasets and Models

Binary Networks have achieved accuracies compara-

ble to full-precision networks on limited domain/simplified

datasets like CIFAR-10, MNIST, SVHN, but show dras-

tic accuracy losses on larger-scale datasets. To compare

with state-of-the-art vision, we evaluate our method on

ImageNet[9]. To show the robustness of our approach, we

test it on sketch datasets, where models fine-tuned with Im-

ageNet are demonstrably not suitable as shown in[34]. Bi-

nary networks might be better suited for sketch data due to

its binary nature and sparsity of information in the data.

ImageNet: The benchmark dataset for evaluating image

recognition tasks, with over a million training images and

50,000 validation images. We report the single-center-crop

validation errors of the final models.

TU-Berlin: The TU-Berlin [10] sketch dataset is the

most popular large-scale free-hand sketch dataset contain-

ing sketches of 250 categories, with a human sketch-

recognition accuracy of 73.1% on average.

Sketchy: It is a recent large-scale free-hand sketch

dataset containing 75,471 hand-drawn sketches from across

125 categories. This dataset was primarily used to cross-

validate results obtained on the TU-Berlin dataset and en-

sure that our approach is robust to the variation in collection

of data.

We use the standard splits with commonly used hyper-

parameters to train our models. Each FullBinConv block

was structured as in XNOR-Net (Batchnorm-Activ-Conv-

ReLU). Each WeightBinConv and Conv block has the

standard convolutional block structure (Conv-Batchnorm-

ReLU). Weights of all layers except the first were bina-

rized throughout our experiments unless specified other-

wise. Note that FLOPs are stated in millions in all diagrams

and sections. All networks are trained from scratch inde-

pendently. The architecture of the hybrid network once de-

signed does not change during training. Additional details
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Technique Acc-Top1 Acc-Top5 W/I Mem FLOPs
AlexNet

BNN 39.5% 63.6% 1/1 32x 121 (1x)

XNOR 43.3% 68.4% 1/1 10.4x 121 (1x)
Hybrid-1 48.6% 72.1% 1/1 10.4x 174 (1.4x)

Hybrid-2 48.2% 71.9% 1/1 31.6x 174 (1.4x)

HTCBN 46.6% 71.1% 1/2 31.6x 780 (6.4x)

DoReFa-Net 47.7% - 1/2 10.4x 780 (6.4x)

Res-Net 18
BNN 42.1% 67.1% 1/1 32x 134 (1x)

XNOR 51.2% 73.2% 1/1 13.4x 134 (1x)
Hybrid-1 54.9% 77.9% 1/1 13.4x 359 (2.7x)

Hybrid-2 54.8% 77.7% 1/1 31.2x 359 (2.7x)

HTCBN 53.6% - 1/2 31.2x 1030 (7.7x)

Table 2: A detailed comparison of accuracy, memory use,

FLOPs with popular benchmark compression techniques on

ImageNet. Our hybrid models outperform other 1-bit acti-

vation models and perform on par with 2-bit models while

having a significantly higher speedup. Hybrid-2 models

have the last layer binarized.

about the datasets, model selection and layer-wise descrip-

tion of each of the hybrid models along with experimental

details can be found in the supplementary material.

4.2. Results

We compare FBin, WBin, Hybrid and FPrec recogni-

tion accuracies across models on ImageNet, TU-Berlin and

Sketchy datasets. Note that higher accuracies are an im-

provement, hence stated in green in the table, while higher

FLOPs mean more computational expense, hence are stated

in red. W/I indicates the number of bits used for weights

and inputs to the layer respectively. Note that in the table,

the compression obtained is only due to the weight bina-

rization, while the decrease in effective FLOPs are due to

activation binarization.

On the ImageNet dataset in Table 3, hybrid versions

of AlexNet and ResNet-18 models outperform their FBin

counterparts in top-1 accuracy by 4.1% and 3.6% respec-

tively, and around 20x compression for both. We also com-

pare with the results of other compression techniques in Ta-

ble 2. On the TU-Berlin and Sketchy datasets in Table

4, we find that Sketch-A-Net and ResNet-18 have signifi-

cantly higher accuracies in the hybrid models compared to

their FBin counterparts, a 13.5% gain for Sketch-A-Net and

5.0% for ResNet-18.

These hybrid models also achieve over 29x compression

over FPrec models and with a reasonable increase in the

number of FLOPs - a mere 7M increase in Sketch-A-Net

and a decent 225M increase in ResNet-18. We also com-

pare them with state-of-the-art sketch classification models

in Table 5. Our hybrid Sketch-A-Net and ResNet-18 mod-

els achieve similar accuracies to state-of-the-art, while also

highly compressing the models upto 233x compared to the

Model Method Accuracy Mem FLOPs
Top-1 Top-5

AlexNet

FPrec 57.1% 80.2% 1x 1135 (9.4x)

WBin (BWN) 56.8% 79.4% 10.4x 780 (6.4x)

FBin (XNOR) 43.3% 68.4% 10.4x 121 (1x)
Hybrid-1 48.6% 72.1% 10.4x 174 (1.4x)

Hybrid-2 48.2% 71.9% 31.6x 174 (1.4x)

Increase Hybrid vs FBin +4.9% +3.5% +21.2x +53 (+0.4x)

ResNet-18

FPrec 69.3% 89.2% 1x 1814 (13.5x)

WBin (BWN) 60.8% 83.0% 13.4x 1030 (7.7x)

FBin (XNOR) 51.2% 73.2% 13.4x 134 (1x)
Hybrid-1 54.9% 77.9% 13.4x 359 (2.7x)

Hybrid-2 54.8% 77.7% 31.2x 359 (2.7x)

Increase Hybrid vs FBin +3.6% +4.5% +17.8x +225 (+1.7x)

Table 3: Our hybrid models compared to FBin, WBin and

NoBin models on Imagenet in terms of accuracy, memory

and computations expense.

Model Method Accuracy Mem FLOPs
TU-Berlin Sketchy

Sketch-A-Net

FPrec 72.9% 85.9% 1x 608 (7.8x)

WBin (BWN) 73% 85.6% 29.2x 406 (5.2x)

FBin (XNOR) 59.6% 68.6% 19.7x 78 (1x)
Hybrid 73.1% 83.6% 29.2x 85 (1.1x)

Increase Hybrid vs FBin +13.5% +15.0% +9.5x +7 (+0.1x)

ResNet-18

FPrec 74.1% 88.7% 1x 1814 (13.5x)

WBin (BWN) 73.4% 89.3% 31.2x 1030 (7.7x)

FBin (XNOR) 68.8% 82.8% 31.2x 134 (1x)
Hybrid 73.8% 87.9% 31.2x 359 (2.7x)

Increase Hybrid vs FBin +5.0% +5.1% - +225 (+1.7x)

Table 4: Our hybrid models compared to FBin, WBin and

full prec models on TU-Berlin and Sketchy datasets in terms

of accuracy, memory and speed tradeoff.

Model Acc Mem FLOPs
AlexNet-SVM 67.1% 1x 1135 (13.4x)

AlexNet-Sketch 68.6% 1x 1135 (13.4x)

Sketch-A-Net SC 72.2% 8x 608 (7.2x)

Sketch-A-Net-Hybrid 73.1% 233x 85 (1x)
ResNet18-Hybrid 73.8% - 359
Humans 73.1% - -

Sketch-A-Net-2 2[33] 77.0% 8x 608 (7.2x)

Table 5: A comparison between state-of-the-art single

model accuracies of recognition systems on the TU-Berlin

dataset.

AlexNet FPrec model. Thus, we find that our hybrid bina-

rization technique finds a balance between sacrificing ac-

curacy and gaining speedups and compression for various

models on various datasets.

4.3. Algorithmic Insights

We gained some insights into where to binarize from

our investigation. We provide them as a set of practical

guidelines to enable rapid prototyping of hybrid models,

which gives meaningful insights into which layers were par-

2It is the sketch-a-net SC model trained with additional imagenet

data, additional data augmentation strategies and considering an ensem-

ble, hence would not be a direct comparison
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Figure 4: Trade-off between WeightBinConv layers and accuracy on the TU-Berlin dataset is shown in the left figure, while

the trade-off between weight binarized layers and speedup is shown in the right figure. Early on, we observe that a small

increase in the percentage of WeightBinConv layers leads to a large increase in accuracy and a marginal decrease in speed.

We achieve accuracies comparable to the WBin model with much fewer WeightBinConv layers.

titioned.

Convert layers towards the end to WeightBinConv:
It is observed that later layers typically have high error

rates, more filter repetitions, and lower computational cost.

Hence, the algorithm tends to start converting models to Hy-

brid from the last layers.

Convert the smaller of the layer placed parallely to
WeightBinConv: It is a good idea to convert the smaller of

the parallely placed layers in the architecture like Resid-

ual layers in the ResNet architecture to WeightBinConv,

since converting them to WeightBinConv would not damage

the computational speedup obtained by the parallel Full-

BinConv layers.

Pick a low Hybridization Ratio: Try to pick low values

of the Hybridization Ratio R, ensuring a low proportion of

number of layers the highest-error cluster.

Relax the Hybridization Ratio for compact models:
Having a higher Hybridization Ratio for compact models

which inherently have fewer flops leaves more layer inputs

un-binarized and retains accuracy.

4.4. Why are layer-wise errors independent?

Can binarization noise introduced in a layer propagate

further into the network and influence other layers? Hubara

et al. [18] provide some insights for the same. Let W be the

weight and I be the input to the convolutional layer. The

output of the convolution between the binary weights and

inputs can be represented by

OB = α · (sgn(Wᵀ)� sgn(I)) (5)

The desired output O is modelled by OB along with the

binarization noise N introduced due to the function sgn(.).

O = W ∗ I =
∑

i

OBi +Ni (6)

When the layer is wide, we expect the deterministic term

OB to dominate, because the noise term N is a summation

over many independent binarizations from all the neurons

in the layer. Thus, we argue that the binarization noise N
should have minimal propagation and do little to influence

the further inputs. Hence, it is a reasonable approximation

to consider the error across each layer independently of the

other layers.

4.5. Variation with the Hybridization Ratio (R)

To observe the trade-off between accuracy and speedup

on different degrees of binarization, we chose different val-

ues of the Hybridization Ratio (R) to create multiple hybrid

versions of the AlexNet, ResNet-18 and SqueezeNet mod-

els. Picking a larger R would result in a higher number of

WeightBinConv layers. We compare these hybrid networks

to their corresponding FBin and WBin versions.

In Figure 4, we show model accuracies of AlexNet,

ResNet-18 and SqueezeNet on the ImageNet dataset plotted

against the number of WeightBinConv layers, starting from

only FBin versions on the left, to only WBin versions on the

right. We observe that in the case of AlexNet and ResNet-

18, which are large models, we recover WBin accuracies

quickly, at around the 35% mark (Roughly a third of the

network containing WeightBinConv layers), with low com-

putational trade-off. We also observe that on sketch data,

hybrid models tend to perform significantly better and per-

form on par with their WBin counterparts.

We also notice that the smaller a model, the more trade-

off must be made to achieve WBin accuracy, i.e a larger Hy-

bridization Ratio must be used. AlexNet, the largest model

crosses WBin accuracy at around 32%, while ResNet-18,

being smaller, saturates at around 40%. SqueezeNet, a

much more compact model, reaches its WBin accuracy at
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Model BinType Last Bin? Acc Mem

Sketch-A-Net FBin (XNOR)
No 59.6% 19.7x

Yes 48.3% 29.2x

Sketch-A-Net Hybrid
No 73.1% 19.7x

Yes 72.0% 29.2x

Resnet-18 FBin (XNOR)
No 69.9% 13.4x

Yes 68.8% 31.2x

Resnet-18 Hybrid
No 73.9% 13.4x

Yes 73.8% 31.2x

Table 6: Effects of last layer weight-binarization on TU-

Berlin dataset, for Sketch-A-Net and ResNet-1. Observe

that our hybrid models do not face drastic accuracy drop

when the last layer is weight-binarized.

60%.

4.6. Optimizing Memory

We measured accuracies for FBin and Hybrid variants

of Sketch-A-Net and ResNet-18 models on TU-Berlin and

Sketchy Datasets with weights of the last layer binarized as

well as non-binarized and the results are presented in Table

6. For AlexNet-styled architectures (Sketch-A-Net), we ob-

serve a drastic drop in accuracies (From 59.1% to 48.3%)

on binarizing the last layer, similar to observations made in

previous binarization works [36, 30].

Many efforts were made to quantize the last layer and

avoid this drop. DoReFaNet and XNOR-Net did not bi-

narize the last layer choosing to incur a degradation in

model compression instead while [30] proposed an addi-

tional scale layer to mitigate this effect. However, our hy-

brid versions are able to achieve similar accuracies (a 1%

drop for hybrid Sketch-A-Net and no drop for ResNet-18

or AlexNet) since the last layer is weight binarized in-

stead. Hence, our method preserves the overall speedup

even though we only weight-binarize the last layer, owing

to the comparatively smaller number of computations that

occur in this layer.

Note that the first layer is always a full-precision Conv

layer. The reasons behind this are the insights obtained

from [1]. They state that the first layer of the network func-

tions are fundamentally different than the computations be-

ing done in the rest of the network because the high variance

principal components are not randomly oriented relative to

the binarization. Also, since it contains fewer parameters

and low computational cost, it does not affect our experi-

ments.

4.7. Compressing Compact Models

Whether compact models can be compressed further,

or need all of the representational power afforded through

dense floating-point values is an open question asked origi-

nally by [19].

We show that our hybrid-binarization technique can

Model Method Accuracy Mem FLOPs
TU-Berlin Sketchy

Sketch-A-Net FPrec 72.9% 85.9% 1x 1135 (12.3x)

Squeezenet FPrec 71.2% 86.5% 8x 610 (6.6x)

Squeezenet WBin 66.7% 81.1% 23.7x 412 (4.5x)

Squeezenet FBin 56.8% 66.0% 23.7x 92 (1x)
Squeezenet Hybrid 64.8% 79.6% 23.7x 164 (1.8x)

Improvement Hybrid vs FBin +8.0% +13.6% - +72 (+0.8x)

Table 7: Our performance on SqueezeNet, an explicitly

compressed model architecture. Although SqueezeNet is

an inherently compressed model, our method still achieves

further compression on it.

work in tandem with other compression techniques, which

do not involve quantization of weights/activations and that

hybrid binarization is possible even on compact models.

We apply hybrid binarization to SqueezeNet[19] a recent

model that employed various architectural design strategies

to achieve compactness. SqueezeNet achieves an 8x com-

pression on the compact architecture of Sketch-A-Net. On

applying hybrid binarization we achieve a further 32x com-

pression, an overall 256x compression with merely 6% de-

crease in accuracy. This is due to the high rate of com-

pression inherent and further compression is difficult due

to the small number of parameters. After showing that effi-

cacy of hybrid binarization in the previous section, we show

that hybrid binarization can work in combination with other

compression techniques here.

Results for SqueezeNet are shown in Table 7 for the

TU-Berlin and Sketchy datasets, and we see that accu-

racy is only slightly lower compared to the hybridized ver-

sions of ResNet-18 and Sketch-A-Net on the same. Hybrid

SqueezeNet achieves a total compression of 256x. Simi-

larly, this technique can be combined with many techniques

such as HWGQ-Net [4] which proposes an alternative layer

to ReLU and repeated binarization as illustrated in [30]

among others. Since our primary goal is to investigate the

viability of hybrid binarization, these investigations- albeit

interesting, are out of the scope of our current work.

5. Conclusion
We proposed a novel algorithm for selective binariza-

tion of CNNs, which strikes a balance between perfor-

mance, memory-savings and accuracy. The accuracies of

our hybrid models were on par with their corresponding

full-precision networks on TU-Berlin and Sketchy datasets,

while providing the benefits of network binarization in

terms of speedups, compression and energy efficiency. We

successfully weight-binarized the last layers without signif-

icant accuracy drops, a problem faced by previous works in

this area. We also showed that we can successfully com-

bine the advantages of our approach with other architec-

tural compression strategies, to obtain highly efficient mod-

els with negligible accuracy penalties.
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