
EquGener: A Reasoning Network for Word Problem Solving by

Generating Arithmetic Equations

by

Pruthwik Mishra, Litton J Kurisinkel, Dipti Misra Sharma, Vasudeva Varma

in

32nd Pacific Asia Conference on Language, Information and Computation (PACLIC 32)
(PACLIC-2018)

The Hong Kong Polytechnic University, Hong Kong SAR

Report No: IIIT/TR/2018/-1

Centre for Language Technologies Research Centre
International Institute of Information Technology

Hyderabad - 500 032, INDIA
December 2018



EquGener: A Reasoning Network for Word Problem Solving by Generating
Arithmetic Equations

Pruthwik Mishra
MT & NLP Lab, KCIS
LTRC, IIIT-Hyderabad

Litton J Kurisinkel
IREL Lab, KCIS

LTRC, IIIT-Hyderabad

Dipti Misra Sharma
MT & NLP Lab, KCIS
LTRC, IIIT-Hyderabad

Vasudeva Varma
IREL Lab, KCIS

LTRC, IIIT-Hyderabad

Abstract

Word problem solving has always been a
challenging task as it involves reasoning
across sentences, identification of operations
and their order of application on relevant
operands. Most of the earlier systems at-
tempted to solve word problems with tailored
features for handling each category of prob-
lems. In this paper, we present a new approach
to solve simple arithmetic problems. Through
this work we introduce a novel method where
we first learn a dense representation of the
problem description conditioned on the ques-
tion in hand. We leverage this representa-
tion to generate the operands and operators in
the appropriate order. Our approach improves
upon the state-of-the-art system by 3% in one
benchmark dataset while ensuring comparable
accuracies in other datasets.

1 Introduction

According to (Koncel-Kedziorski et al., 2015; Hos-
seini et al., 2014), a word problem narrates a par-
tial world state consisting of entities, entity holders,
quantities and other participants. It either changes
the state of entities or expounds the relationships be-
tween them. At the end, the problem queries about
a quantity which can be obtained by arithmetically
combining several quantities mentioned in the ques-
tion as shown in Table 1. Natural language under-
standing plays a key role in solving any Mathemati-
cal Word Problem (MWP). Automating such prob-
lem solving requires better reasoning across sen-
tences, also involves complex inference using world

knowledge, co-reference resolution and a large vo-
cabulary. Simple keyword or pattern matching is
less equipped to take up such a challenge (Bakman,
2007).

There are 112 short trees and 119 tall trees
currently in the park . Park workers will plant
105 short trees today . How many short trees
will the park have when the workers are fin-
ished ?
Answer : 112 + 105

Table 1: Mathematical Word Problem Example

Previous systems either rely heavily on specific
set of problem abstractions based on verb categories
(Hosseini et al., 2014) or learning equations from
pre-defined set of templates (Kushman et al.,
2014). Deep neural solvers (Wang et al., 2017)
proposed a combination of sequence-to-sequence
model and information retrieval system. However,
an ideal equation generation system for a word
problem should be able to identify components of
the equation and form the equation in an orderly
fashion independent of syntax or vocabulary of the
sentences.
In this work, we introduce EquGener - an equation
generator using a memory network with an equation
decoder. Intuitively, a human math solver collects
relevant details from the problem description which
equip her to solve the problem (Dellarosa, 1986).
Driven by this intuition, we learn a dense semantic
representation of the problem description consisting
of multiple sentences, conditioned on the question
in hand. An equation necessary to solve the question



is decoded out of the learned dense representation.
We propose a novel architecture for solving word
problems using an end-to-end memory network
with an equation decoder. Unlike most of the
previous works which are equipped to handle only a
subset of operations, our system handles problems
involving all kinds of arithmetic operations.
Our code is shared at http://
somewhereontheweb

2 Approach

2.1 Base model

The encoder-decoder architecture (Sutskever et al.,
2014) has proved beneficial in many applications.
But, this architecture has its limitation in handling
long input sequences. This limitation results from a
fixed size internal representation of the encoded se-
quence where the target sequence is decoded from
this representation. Attention mechanism (Luong et
al., 2015) has been widely used where the network
learns the relative importance on which parts to at-
tend to. In this architecture, the input sequence is
encoded as a sequence of vectors and the decoder
has access to all these vectors instead of a single
vector. We modeled the input sequence as a se-
quence of word vectors. Each word vector is a con-
catenated vector representation of pre-trained glove
(Pennington et al., 2014) embeddings and the em-
beddings learned by the network from the training
corpus. The equation generation for a word problem
requires the identification of words which indicate
the presence of operands and operators. So an atten-
tion based encoder-decoder has been used as a base-
line for our equation generation system. Both the
encoder and decoder employ Long-term short-term
memory (LSTM) to represent the input and target
sequence respectively.

hj = f(hj−1, sj) (1)

The jth hidden state of the encoder is computed as
equation 1 using an LSTM. The decoder is initial-
ized with the hidden and cell states obtained at the
last time-step of the encoder. Global attention model
(Luong et al., 2015) considers all the hidden states of
the encoder to derive the context vector. Each hid-
den state of the input word sequence and the hidden

state of the equation are compared to arrive at the
alignment.

at = align(ht, h̃s)

=
exp(ht

T.h̃s)

Σs′ exp(ht
T.h̃′

s)

(2)

The context vector ct is computed as the weighted
combination of the hidden states from the word se-
quence:

ct = Σtat × ht (3)

The attentional hidden state in the decoder side is
obtained by concatenating the context vector from
the input word sequence and equation hidden state.

h̃t = Wc[ct; ht] (4)

2.2 Memory Network Based Encoder
End-to-End memory networks (Sukhbaatar et al.,
2015) succeeds in representing sentences as well as
captures the salience or the intent of the question in
Question Answering systems. We used a variant of
memory network to solve arithmetic word problems.
EquGener learns dense continuous representations
of the question sentence and the supporting sen-
tences featuring in the problem text. The word rep-
resentations in the supporting sentences act as mem-
ories and these are weighted as per the question. The
relevant memories are assigned higher weights than
the irrelevant ones. This weighted combination of
memory vectors is then learned by the encoder to
obtain a hidden representation of the word sequence
appearing in the supporting sentences conditioned
on the question words. The decoder then gener-
ates the equation conditioned on the encoded hid-
den representation. Two kinds of memory network
settings are generally followed : (1) explicit identi-
fication of supporting sentences where the equation
components lies (2) without any information regard-
ing supporting sentences. We used the later config-
uration for our system which required less supervi-
sion than the former. Considering our input to be
a sequence of words w1, w2, w3, .., wn, this words
are transformed or embedded into a lower dimen-
sion space d which can be achieved via an embed-
ding matrix A of size d× V where V is the vocabu-
lary size. Each word is represented as a vector con-
catenating its glove embedding (Pennington et al.,



2014) and its transformed inputs. These are called
the memories in our memory network. EquGener
learned the words which had to be attended to based
only on the question text. The input to our system
is a sequence of words. As the word embeddings
learned from a small training corpus were not reli-
able, we augmented the word representations with
pre-trained glove embeddings. This strategy helped
us in handling words which were not available in
pre-trained word vectors like numi in the problem
text.

mi = [wp; we] (5)

where wp and we denotes the pre-trained embed-
dings and learned word embeddings respectively.
The question sentence in a word problem is also
embedded using a matrix B of similar dimension to
A. A is used to embed the words appearing in sup-
porting sentences while embedding B is used for the
words in the question. This represents the internal
state u for the question. The match between inter-
nal state and memory elements helps in predicting
the components involved in an equation. The match
is found using a dot product between u and mi and
applying a softmax function over it.

pi = softmax(uT.mi)

softmax(xi) =
exi∑n
j=1 exj

(6)

where n refers to the total number of words in the
supporting sentences
There is a probability score for each word appearing
in memories. Each memory mi has a correspond-
ing output vector ci which is obtained through an-
other embedding matrix C. The output vector is a
weighted sum of pi and cis. We used a slight modi-
fication to this formulation used in memory network
(Sukhbaatar et al., 2015) which is given below in
equation 7. We describe two formulations for single
layer and multi-layer memory network.

2.2.1 Single Layer
The output memory representation O is a dense

representation of the words in the supporting sen-
tences conditioned on the question.

o =
n∑

i=1

pi + ci (7)

This output vector is passed through a fully con-
nected dense network to capture a vector which is
of equal dimension as the word representations. The
The sequence is fed to the LSTM encoder for repre-
sentation of the sequence. This sequence is a sum of
embeddings for the query and the vector after pass-
ing the output vector through the dense network.

d = Dense(o) (8)

E = u + d (9)

2.2.2 Multi-Layer
In case of multi-layer memory network, the hid-

den state gets updated in each hop with discovery
of new attention points in the memories according
to the question. The attention produces a probabil-
ity distribution of the semantic match between the
words present in question and supporting sentences.
Same input and output embeddings are used across
the layers. The match For a k-hop memory network
where the memory layers are stacked on top of each
other, the internal state is updated as follows,

uk+1 = uk + dk (10)

and at the final hop K,

uK+1 = uK + dK (11)

The computation of dk is same as the single layer
case. The hidden state of the encoder is computed
as per the equations 11-16. 1

ft = σ(Wf · [ht−1, xt] + bf) (12)

it = σ(Wi · [ht−1, xt] + bi) (13)

C̃t = tanh(WC · [ht−1, xt] + bC) (14)

Ct = ft ∗ Ct−1 + it ∗ C̃t (15)

ot = σ(Wo · [ht−1, xt] + bo) (16)

ht = ot ∗ tanh(Ct) (17)

2.3 Decoder

The decoder takes the encoder representation
learned in the memory network and predicts the
operands and operators sequence. The decoder is
initialized with the last hidden state and cell state

1http://colah.github.io/posts/2015-08-Understanding-
LSTMs



from the encoder. The decoder also uses an LSTM
to predict the next output. The decoder predicts the
output distribution using teacher forcing (Lamb et
al., 2016). The hidden and cell states are computed
according to the LSTM equations defined in section
2.2. In Figure 1, the output tokens are referred to as
Op1, Op2 and Opr which stand for the operands and
the operator of the equation.

3 Experimental Setup

3.1 Data

We used 1314 arithmetic problems with a single op-
eration present in MAWPS Koncel-Kedziorski et al.
(2016) as our training set. The operations include all
basic mathematical operation addition (+), subtrac-
tion (-), multiplication (*) and division (/). The two
benchmark datasets for evaluation are MA1 and IXL
dataset Mitra and Baral (2016) which are subsets of
the AI2 dataset Hosseini et al. (2014) released as a
part of project Euclid 2. We chose problems with
only single operation from these two datasets - 103
from MA1 and 81 from IXL dataset.

3.2 Preprocessing

Every number appearing in a word problem is re-
placed by numi in a random fashion where i ε [1, 6].
This is done to minimize the sparsity of different
kinds of numbers appearing in the problem text.
This also assisted in learning better representations
of numbers in word problems. Each word problem
was divided into two parts - problem text or support-
ing sentences and question text which is shown in 2.
NLTK (Bird and Loper, 2004) was used to tokenize
the sentences in a word problem. The last sentence
in the list of tokenized sentences was considered as
the question sentences and rest as supporting sen-
tences. The equations were labeled in postfix nota-
tion e.g. num1 num3 +

3.3 Setting

We used publicly available glove pre-trained embed-
dings 3 that were trained on Common Crawl contain-
ing 42 billion tokens, with a vocabulary size of 1.9
million. The development set was fixed to 5% of
the training data. The embedding weights for these

2http://allenai.org/euclid.html
3http://nlp.stanford.edu/data/glove.42B.300d.zip

There are 112 short trees and 119 tall trees
currently in the park . Park workers will plant
105 short trees today . How many short trees
will the park have when the workers are fin-
ished ?
There are num3 short trees and num4 tall
trees currently in the park . Park workers will
plant num2 short trees today . How many
short trees will the park have when the work-
ers are finished ?
S1. There are num3 short trees and num4 tall
trees currently in the park .
S2. Park workers will plant num2 short trees
today .
Q. How many short trees will the park have
when the workers are finished ?

Table 2: Preprocessing Steps For Word Problems

Operation Frequency
+ 472
− 445
∗ 226
/ 171

Total 1314

Table 3: Frequency Analysis of Operations in Training
Data

were uniformly initialized. Dropout (Srivastava et
al., 2014) rate of 0.2 was used while learning the
embeddings A, B and C. The embedding and the
LSTM output dimensions were set to be 64. The
concatenated vector representation for each word is
a vector of size 364. Maximum number of words
appearing in the supporting sentences and question
sentences were 56 and 34 respectively. No dropout
rates were specified for the LSTMs. The recurrent
weights were initialized as an random orthogonal
matrix. The input weights were assigned from a
Glorot (Glorot and Bengio, 2010) uniform distribu-
tion with bias being initialized to zeros. Following
this procedure, we were able to reduce the output
vocabulary size. The encoder and decoder hidden
and cell state was also fixed to be of dimension 64.
Keras4 (Chollet and others, 2015) deep learning li-

4https://keras.io/



Figure 1: Architecture Diagram Of EquGener for Single Layer

brary was used to build the network. Adam (Kingma
and Ba, 2014) optimizer was used for optimization
of the parameters. The system was trained for 50
epochs with validation set. In case of multiple hops,
same embeddings A and C were used in different
layers.

A1 = A2 = .. = AK (18)

C1 = C2 = .. = CK (19)

uk+1 = uk + ok (20)

We experimented for only two hops.
For the base model, the same glove embeddings

and the same configurations for LSTM, embedding
layer were used.

4 Results and Observation

4.1 Comparison With Other Systems
We compared our system with other systems on
MA1 and IXL datasets. Table 4 shows the accuracy
of the systems in solving word problems in terms
of percentage of problems solved. In terms of over-
all performance our system beats all the state-of-the
art systems. EquGener beats ARIS by a big margin.
ARIS uses rigid templates for various verbs and rely
on different external resources. EquGener implicitly
handles all kinds of varieties of real world scenarios
in a continuous space and can be more effective than
discrete fixed templates.

System MA1 IXL Avg
ARIS(2014) 83.6 75.0 79.3
KAZB(2014) 89.6 51.1 70.35
ALGES(2016) - - 77.0

(Roy and Roth, 2016b) - - 78.0
(Mitra and Baral, 2016) 96.27 82.14 89.20

Att. encoder-decoder 92.23 71.61 81.92
EquGener 1 hop 91.26 85.19 88.22
EquGener 2 hops 94.18 85.19 89.68

Table 4: Comparison Of proposed system with other sys-
tems. Numerical values represent % of problems
solved

EquGener outperforms KAZB significantly.
KAZB uses a joint log-linear model distribution
over a full system of predefined equations and align-
ments between the text and equation templates. As
the alignment space is exponential while aligning
with the slots, beam search is employed to find
approximate solution. KAZB (2014) uses surface
level features for the words, does not employ
any semantic representation of them. So KAZB
performs poorly on IXL where there is information
gap and irrelevant quanitities. EquGener makes
use of the dense semantic representation and can
identify irrelevant quantities easily. EquGener
improves upon ALGES (2015) by 12% in terms of
overall accuracy. ALGES solves word problems by



generating equation trees and scoring them. The
tree that best represents the computation inside the
problem is scored highest. It employs a quantity
schema and uses grammatical features to find to
form quantity sets. Integer Linear Programming is
applied on the quantity sets to find type-consistent
equation trees. Dependence on external parsing
tools, lack of semantic knowledge attributes to the
errors of the system. EquGener is independent
of any external tool usage and performs better
in isolation. Similarly, Roy and Roth (2016b)
solve the word problems through equation tree
generation. Two classifiers are used - one to find
relevant quantities and other to find the operator as
the Least Common Ancestor between them. Certain
constraints are imposed on tree generation, the tree
with highest score is chosen as the equation tree.
Incorrect equations are generated due to erroneous
quantity extraction. EquGener does not depend
on any extraneous information like grammatical
and dependency features and is able to identify
words which denote the quantities and operation.
Mitra and Baral (2016) is the current state-of-the-art
system. EquGener beats its overall accuracy by
0.48%. Mitra and Baral (2016) classify each
addition or subtraction problem into 3 concepts and
each concept is associated with a formula. Different
features are defined for each formula. Multiple
formulas can be applied to a word problem, a
log linear model scores each formula based on its
features. The biggest limitation of this system is its
reliance on external tools like wordnet, dependency
parser and conceptnet. The system can only solve
addition and subtraction problems. EquGener does
not need any computation of extra features to solve
word problems. It can solve problems with any
arithmetic operation. Our baseline system performs
very poorly on IXL on problems with irrelevant
quantities. The attention encoder-decoder decodes
the equation based on the whole sequence, the
system has to find the attention weights on all the
words including question words. EquGener on
the other hand generates the equation based on the
question.

4.2 Operand Prediction

The operand prediction accuracies improve with
number of hops. EquGener requires several hops to

identify the exact operands correctly. The major er-
ror in operand prediction in our system resulted from
the predictions that were out-of-order. The accuracy
of the relevant quantity or operand prediction (Roy
and Roth, 2016b) was 89.1%. EquGener improved
upon this accuracy by 3%.

4.3 Operator Prediction

EquGener outperforms the baseline system in oper-
ator prediction by significant margin. This strength-
ens our hypothesis that memory networks are better
at capturing the intention of verbs that have direct
correlation to arithmetic operations. The accuracy in
verb categorization by ARIS (Hosseini et al., 2014)
was 81.2%. The accuracy reported for LCA oper-
ation prediction was 88.7% with all features (Roy
and Roth, 2016b). EquGener outperforms these two
systems in operator prediction by a big margin with
operator prediction accuracy 97% on an average. As
the training set contains problems containing all op-
erations, the baseline model predicted multiplica-
tion and division operations though the IXL dataset
only contained AddSub problems. This prediction
anomaly was not observed in case of EquGener.

5 Error Analysis

Some of the erroneous output produced by
EquGener are shown in the Table 5. In the first ex-
ample system is able to identify operators and oper-
ation accurately. However system could not identify
the direction of transfer for verb ’borrow’ which re-
sulted in an erroneous prediction of order of equa-
tion components. We observe that this is a problem
due to data sparsity and can be overcome by mak-
ing the dataset more dense. In the second example
system predicted an operand num5 which is present
nowhere in problem description. Though we expect
the numerical values mentioned in the problem de-
scription not to be attached to any context, repeated
occurrence may violate this assumption in certain
cases. An architectural improvement to handle the
numerical values can improve the results.

6 Discussion

The figure 2 below shows the relative attention of
words in supporting sentences conditioned on ques-
tion words. The words in the question are shown



(a) Operand and Operator Predictions for MA1 (b) Operand and Operator Predictions for IXL

TestSet Question Predicted Actual
MA1 Joan picked num3 apples from the orchard . Melanie

borrowed num1 apples from her . How many apples
does Joan have now ?

num1 num3 - num3 num1 -

IXL Tom went to num1 hockey games this year , but missed
num4 . He went to num3 games last year . How many
hockey games did Tom go to in all ?

num1 num5 + num1 num3 +

Table 5: Predicted and Actual Equations from Different Test Sets

Figure 2

in Y-axis and the words in the X-axis constitute the
supporting sentences. EquGener is able to figure

out num4 as an irrelevant quantity as it is associ-
ated with the entity crayons whereas the question is



asked about the rulers. The verb “place” appears in
the context of the rulers, so it also receives higher
weights.

7 Previous Work

Mukherjee and Garain (2008) explained different
techniques used for word problem solving in their
survey paper. Bobrow (1964) represented word
problems in terms of a relational model. Bakman
(2007) touched upon understanding of word prob-
lems involving extraneous information. Multiple ap-
proaches like template alignment, verb categoriza-
tion, CFG rules can be used to solve word prob-
lems. Liang et al. (2018) suggested that there exists
mainly two kinds of approaches for solving MWPs
- one involving understanding and the other with-
out understanding. Kushman et al. (2014) system
was a joint log linear distribution over the full set
of equations and alignments between the variables
and text. The number of equations was dependent
on the number of training equation templates. The
number slots were filled by the numbers present in
the text while the unknown or variable slot were
filled by the nouns in the problem text. Huang et al.
(2017) also extracted relevant templates and did fine
grained inferencing to solve word problems. Illinois
Math Solver (Roy and Roth, 2016a) used two mod-
ules to solve any arithmetic word problem. The first
module was a CFG based Semantic Parser and other
module solved the problem by decomposing it into
a series of classification problems (Roy and Roth,
2016b) with formation of an expression tree through
constrained inference. Hosseini et al. (2014) ‘s sys-
tem used verb categorization for identifying relevant
variables, their values and mapping them into a set
of linear equations which can be easily solved. The
system identified 7 kinds of verbs used in the prob-
lems which was predicted by support vector ma-
chines. Mitra and Baral (2016) created an arithmetic
word problem solver that learned how to use formu-
las to solve simple addition and subtraction prob-
lems. Templates corresponding to particular formu-
las were manually modeled with pre-defined slots.
All possible applications of different formulas were
passed through a log-linear model to pick the best
solution with highest score. The features to the
model were dependency labels by running Stanford

dependency parser, POS tags, some linguistic cues,
Wordnet (Miller, 1995) features. Recently there
have been renewed interest in solving word prob-
lem through deep learning techniques. Huang et al.
(2018) used intermediate meaning representation to
generate equations. There has been attempts (Ling et
al., 2017) to generate answer rationales for arriving
at the final answer. Wang et al. (2017) used a hybrid
model of RNN and similarity-based information re-
trieval methods to outperform existing solvers. They
used a 5 layer deep network - one word embedding
layer, two-layer GRU (Chung et al., 2014) on the
encoder side and two-layer LSTM (Hochreiter and
Schmidhuber, 1997) as the decoder. A modified ver-
sion of the sequence-to-sequence model was used to
validate each generated output symbol with the help
of some hand-written rules and modified the soft-
max function on the decoder side. There have been a
concerted effort to create large scale and diversified
datasets. Huang et al. (2016) analyzed the existing
datasets, and created a large-scale dataset from com-
munity question answering web pages. Most of the
neural network frameworks suffer from lack of per-
formance in presence of a limited training dataset.
(Weston et al., 2014) introduced long term memory
components in neural networks for better reason-
ing called “memory networks”. The memories can
be retrieved and written multiple times and can be
used for prediction in multiple tasks. (Sukhbaatar et
al., 2015) came up with an end-to-end memory net-
work which required less supervision in giving an-
swers to a question asked from a story like setting.
In this paper, we trained the system on a training
set containing word problems with single operations
and showed that memory network based architecture
was able to learn to generate such equations.

8 Conclusion and Future Work
We proposed an end-to-end memory network based
encoder decoder which was able to generate single
equations for simple word problems. The system
registered improvement in performance in presence
of multiple hops. We can also extend our work for
word problems with multiple operations which re-
quires the decoder to generate multiple equations.
We can also explore techniques to handle OOVs
suggested in (Weston et al., 2014) taking into ac-
count the feature representation of the context where
OOVs appear.



References
Yefim Bakman. 2007. Robust understanding of word

problems with extraneous information. arXiv preprint
math/0701393.

Steven Bird and Edward Loper. 2004. Nltk: the nat-
ural language toolkit. In Proceedings of the ACL
2004 on Interactive poster and demonstration ses-
sions, page 31. Association for Computational Lin-
guistics.

Daniel G Bobrow. 1964. A question-answering system
for high school algebra word problems. In Proceed-
ings of the October 27-29, 1964, fall joint computer
conference, part I, pages 591–614. ACM.

François Chollet et al. 2015. Keras. https://
github.com/fchollet/keras.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho,
and Yoshua Bengio. 2014. Empirical evaluation of
gated recurrent neural networks on sequence model-
ing. arXiv preprint arXiv:1412.3555.

Denise Dellarosa. 1986. A computer simulation of
childrens arithmetic word-problem solving. Behav-
ior Research Methods, Instruments, & Computers,
18(2):147–154.

Xavier Glorot and Yoshua Bengio. 2010. Understand-
ing the difficulty of training deep feedforward neural
networks. In Proceedings of the thirteenth interna-
tional conference on artificial intelligence and statis-
tics, pages 249–256.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9(8):1735–
1780.

Mohammad Javad Hosseini, Hannaneh Hajishirzi, Oren
Etzioni, and Nate Kushman. 2014. Learning to solve
arithmetic word problems with verb categorization. In
EMNLP, pages 523–533.

Danqing Huang, Shuming Shi, Chin-Yew Lin, Jian Yin,
and Wei-Ying Ma. 2016. How well do computers
solve math word problems? large-scale dataset con-
struction and evaluation. In Proceedings of the 54th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), volume 1, pages
887–896.

Danqing Huang, Shuming Shi, Chin-Yew Lin, and Jian
Yin. 2017. Learning fine-grained expressions to solve
math word problems. In Proceedings of the 2017 Con-
ference on Empirical Methods in Natural Language
Processing, pages 805–814.

Danqing Huang, Jin-Ge Yao, Chin-Yew Lin, Qingyu
Zhou, and Jian Yin. 2018. Using intermediate repre-
sentations to solve math word problems. In Proceed-
ings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
volume 1, pages 419–428.

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Rik Koncel-Kedziorski, Hannaneh Hajishirzi, Ashish
Sabharwal, Oren Etzioni, and Siena Dumas Ang.
2015. Parsing algebraic word problems into equa-
tions. Transactions of the Association for Computa-
tional Linguistics, 3:585–597.

Rik Koncel-Kedziorski, Subhro Roy, Aida Amini, Nate
Kushman, and Hannaneh Hajishirzi. 2016. Mawps:
A math word problem repository. In Proceedings of
NAACL-HLT, pages 1152–1157.

Nate Kushman, Yoav Artzi, Luke Zettlemoyer, and
Regina Barzilay. 2014. Learning to automatically
solve algebra word problems. Association for Com-
putational Linguistics.

Alex M Lamb, Anirudh Goyal ALIAS PARTH GOYAL,
Ying Zhang, Saizheng Zhang, Aaron C Courville, and
Yoshua Bengio. 2016. Professor forcing: A new al-
gorithm for training recurrent networks. In D. D. Lee,
M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Gar-
nett, editors, Advances in Neural Information Process-
ing Systems 29, pages 4601–4609. Curran Associates,
Inc.

Chao-Chun Liang, Yu-Shiang Wong, Yi-Chung Lin, and
Keh-Yih Su. 2018. A meaning-based statistical
english math word problem solver. arXiv preprint
arXiv:1803.06064.

Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blun-
som. 2017. Program induction by rationale gener-
ation: Learning to solve and explain algebraic word
problems. arXiv preprint arXiv:1705.04146.

Minh-Thang Luong, Hieu Pham, and Christopher D
Manning. 2015. Effective approaches to attention-
based neural machine translation. arXiv preprint
arXiv:1508.04025.

George A Miller. 1995. Wordnet: a lexical database for
english. Communications of the ACM, 38(11):39–41.

Arindam Mitra and Chitta Baral. 2016. Learning to use
formulas to solve simple arithmetic problems. In ACL
(1).

Anirban Mukherjee and Utpal Garain. 2008. A review of
methods for automatic understanding of natural lan-
guage mathematical problems. Artificial Intelligence
Review, 29(2):93–122.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 conference
on empirical methods in natural language processing
(EMNLP), pages 1532–1543.

Subhro Roy and Dan Roth. 2016a. Illinois math solver:
Math reasoning on the web. In HLT-NAACL Demos,
pages 52–56.



Subhro Roy and Dan Roth. 2016b. Solving gen-
eral arithmetic word problems. arXiv preprint
arXiv:1608.01413.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. The Journal of Machine Learning
Research, 15(1):1929–1958.

Sainbayar Sukhbaatar, Jason Weston, Rob Fergus, et al.
2015. End-to-end memory networks. In Advances in
neural information processing systems, pages 2440–
2448.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural networks.
In Advances in neural information processing systems,
pages 3104–3112.

Yan Wang, Xiaojiang Liu, and Shuming Shi. 2017. Deep
neural solver for math word problems. In Proceedings
of the 2017 Conference on Empirical Methods in Nat-
ural Language Processing, pages 845–854.

Jason Weston, Sumit Chopra, and Antoine Bordes. 2014.
Memory networks. CoRR, abs/1410.3916.


