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Abstract— Existing deep learning based visual servoing ap-
proaches regress the relative camera pose between a pair of
images. Therefore, they require a huge amount of training
data and sometimes fine-tuning for adaptation to a novel scene.
Furthermore, current approaches do not consider underlying
geometry of the scene and rely on direct estimation of camera
pose. Thus, inaccuracies in prediction of the camera pose,
especially for distant goals, lead to a degradation in the servoing
performance. In this paper, we propose a two-fold solution:
(i) We consider optical flow as our visual features, which
are predicted using a deep neural network. (ii) These flow
features are then systematically integrated with depth estimates
provided by another neural network using interaction matrix.
We further present an extensive benchmark in a photo-realistic
3D simulation across diverse scenes to study the convergence
and generalisation of visual servoing approaches. We show
convergence for over 3m and 40 degrees while maintaining
precise positioning of under 2cm and 1 degree on our challeng-
ing benchmark where the existing approaches that are unable
to converge for majority of scenarios for over 1.5m and 20
degrees. Furthermore, we also evaluate our approach for a real
scenario on an aerial robot. Our approach generalizes to novel
scenarios producing precise and robust servoing performance
for 6 degrees of freedom positioning tasks with even large
camera transformations without any retraining or fine-tuning.

I. INTRODUCTION

Visual servoing addresses the problem of attaining a

desired pose with respect to a given environment using image

measurements from a vision sensor. Classical visual servoing

approaches extract a set of hand-crafted features from the

images. Pose based visual servoing (PBVS) approaches use

these visual features to estimate the camera pose directly

in Cartesian space from a given image. The controller then

guides the robotic system in the direction that minimizes

the difference in pose between current and desired image

pair directly in 3D space. In contrast, image based visual

servoing (IBVS) approaches control the robot by minimizing

the feature error explicitly in the image space [1]. It can

be observed that the pose based visual servoing controllers

attain the desired pose without getting stuck at local minima.

They, however, are sensitive to camera calibration errors and

pose estimation errors [2]. On the contrary, image based

visual servoing approaches are robust to calibration and

depth errors but could lead to a local minima. Classical

PBVS and IBVS approaches, both rely on reliable matching

of hand-crafted features, thus inaccuracies while obtaining

correspondences degrades the servoing performance. Direct
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visual servoing [3] approaches avoid the feature extraction

step and operate directly on image measurements. This helps

in achieving higher precision in goal reaching, but the trade-

off is a smaller convergence basin. Another rigid requirement

of classical visual servoing approaches is the knowledge of

environment’s depth. This is especially difficult to obtain on

robotic systems using a monocular camera.

To circumvent the requirement for extracting and tracking

hand-crafted features, Saxena et al. [4] presented a deep

learning based visual servoing approach. Specifically, they

employed a deep network to estimate the relative camera

pose, from an image pair. A traditional PBVS controller

is then used to minimize the relative pose between the

current and the desire image. Their network was trained

on publicly available Microsoft 7 scenes dataset [5] for

estimating relative camera pose. Although trained on limited

number of scenes, their network was able to generalise

well on novel environments, however, the convergence basin

was limited. Bateux et al. [6] presented a similar deep

pose based visual servoing approach with a Siamese [7]

based network architecture for estimating relative camera

pose from an image pair. They further proposed extensive

guidelines for training deep networks for the task of visual

servoing. They used LabelMe database [8] which contains

a diverse set of images with scene variations while using

homography for obtaining viewpoint variations to make the

network robust. The network was then trained to estimate

the relative pose given a pair of images taken from these

viewpoints, which helped in generalisation of the approach

to different environments. Similarly, Yu et al. also present

a Siamese style deep network for visual servoing [9], their

network obtains a much higher sub-millimeter precision for

the servoing task, however the network was trained only on

a table-top scene with similar objects and therefore requires

retraining for adjusting to novel environments.

Unlike the above approaches that estimate the relative

camera pose and use a PBVS controller for achieving the

desired pose, recent deep reinforcement learning based vi-

sual servoing approaches [10], [11], [12], [13] use neural

controllers to maximize the rewards and therefore require

minimal supervision. However, several of these approaches

are specific to manipulation tasks and are trained only for

scene with objects lying on a table. Furthermore, these

approaches do not consider full 6 degrees of freedom (DOF)

visual servoing. Sampedro et al. [14] showcased a similar

deep reinforcement learning approach for an aerial robot for

autonomous landing on a moving target, however they only

report results for a single scene with a colored target. Zhu

et al. [15] presents the results quite similar to ours on a














