
FPGA based Parallelized Architecture of Efficient Graph based

Image Segmentation Algorithm

by

Roopal Nahar, Akanksha Baranwal, Madhava Krishna

in

2017 IEEE Int. Conf. on Robotics and Biomimetics

Report No: IIIT/TR/2017/-1

Centre for Robotics
International Institute of Information Technology

Hyderabad - 500 032, INDIA
December 2017

FPGA based Parallelized Architecture of Efficient
Graph based Image Segmentation Algorithm

Roopal Nahar1, Akanksha Baranwal1, K.Madhava Krishna1

Abstract—Efficient and real time segmentation of color images
has a variety of importance in many fields of computer vision
such as image compression, medical imaging, mapping and
autonomous navigation. Being one of the most computationally
expensive operation, it is usually done through software imple-
mentation using high-performance processors. In robotic systems,
however, with the constrained platform dimensions and the need
for portability, low power consumption and simultaneously the
need for real time image segmentation, we envision hardware
parallelism as the way forward to achieve higher acceleration.
Field-programmable gate arrays (FPGAs) are among the best
suited for this task as they provide high computing power in a
small physical area. They exceed the computing speed of software
based implementations by breaking the paradigm of sequential
execution and accomplishing more per clock cycle operations by
enabling hardware level parallelization at an architectural level.

In this paper, we propose three novel architectures of a well
known Efficient Graph based Image Segmentation algorithm.
These proposed implementations optimizes time and power
consumption when compared to software implementations. The
hybrid design proposed, has notable furtherance of acceleration
capabilities delivering atleast 2X speed gain over other implemen-
tations, which henceforth allows real time image segmentation
that can be deployed on Mobile Robotic systems.

I. INTRODUCTION

Image segmentation is a key component of robotic vi-
sion systems and is used widely in applications that entail
superpixelling and unsupervised segmentation. As a conse-
quence, many different approaches have been proposed in
this area like clustering [1], region-based growing [2], graph
cuts [3][4],super-pixeling [5]. However, nowadays, various
methods of deep learning like CNN [6], SegNet [7], semantic
image segmentation [6] are commonly used.

FPGA (Field-programmable gate arrays) implementations
find relevance in Robotics due to its small physical area, light
weight and its high capability of delivering tightly packed,
energy efficient designs. FPGA provides real time paral-
lelization, gate level control of system architecture allowing
control over minute details of the arithmetic design. They
also provide an opportunity to pipeline sequential processes.
FPGA implementations of Image processing descriptors [8],
collision avoidance [9], further certify, that use of FPGA is an
ideal solution for robotic systems with constrained dimensions.
Hence, we can exploit the hardware flexibility, parallelization,
logical, electrical and physical advantages provided by FPGA.
And consequently, will help to achieve real time and energy

1 Robotics Research Center, IIIT-Hyderabad, India
roopalnahar08@gmail.com
akankshabar@gmail.com
mkrishna@iiit.ac.in

Fig. 1: Input Image and Segmented Output Image using
Efficient Graph Based Segmentation approach on FPGA

efficient image segmentation as compared to the software and
other hardware implementations.The research work that has
been done in the field of FPGA based Image Segmentation
finds its applications in robotics, computer vision and medical
imaging [10][11][12].

This paper focuses on three novel architectures - Sequential,
Pipelined and Hybrid of the well known Efficient Graph based
Segmentation Algorithm[4] on FPGA. The sequential design
exploits the gate level control of system architecture allowing
the control over minute details of arithmetic design which
is difficult in CPU implementation. Due to sequential nature
of the sub-modules, this architecture is further modified to a
pipelined design, by allowing interleaving of the processing
steps of the sub-modules used in the algorithm. Parallelism
and pipelining have been incorporated into the hybrid design
by making multiple copies of elementary modules and us-
ing them in parallel, along with scheduling them efficiently.
These hardware implementations reduce power dissipation and
achieve real time segmentation.

Comparative study of these three novel architectures has
been done in terms of clock cycles and power dissipation
to bring out vividly the advantages of FPGA over software
implementation which generally follows sequential approach.
The sequential approach shows a tangible improvement in
computation time when compared to CPU implementation,
but the hybrid architecture delivers an acceleration gain of at
least 2X to the CPU implementation with much lesser power
dissipation. The other results for the same will be delineated
in more detail in the results section. The implementation is
done using Verilog HDL language and the same is simulated
and synthesized using Xilinx Vivado Design Suite.

II. EFFICIENT GRAPH BASED IMAGE SEGMENTATION
ALGORITHM

Efficient Graph based Segmentation algorithm by Felzen-
szwalb and Huttenlocher [4] has turned out to be popular
due to its simplicity and high fidelity outputs. An important
characteristic of this algorithm is its ability to preserve detail

Fig. 2: Block diagram of Efficient Graph Based Image Segmentation.

in low variability image regions while ignoring detail in high
variability regions. The overall flow of the algorithm [4] can
be well-explained by the block diagram illustrated in Fig. 2.

Fig. 3: Instead of considering the 8 conventional neighbors
around a vertex Va, we consider only these 4 neighbors
(Vb1, Vb2, Vb3, Vb4) for edge weight calculations to remove
redundancy

In this algorithm, a color image is given as input in RGB for-
mat which undergoes smoothening. Image is then represented
as a weighted undirected graph G=(V, E). Here, V represents
vertices (the set of pixels in the image) and E represents the
set of edges defined between two adjacent vertices. For every
vertex say Va, there will be four vertices (Vb1, Vb2, Vb3 and
Vb4) that will be considered for graph formation as shown in
figure3. Each edge (va,vb) ∈ E has a corresponding weight
w(va,vb), which is a non-negative measure of the dissimilarity
between neighboring elements va and vb. The weight of the
edge E(va,vb) is the Euclidean distance between them in RGB
color space. Preprocessing and graph initialization is done in
the sub-module named Preprocessing and Graph initialization.

In graph based approach, Segmentation S is partitioning
of V into components such that each component C∈ S
corresponds to a connected component in a graph G’= (V,E’),
where E’ ∈ E. In Threshold based Graph agglomeration
sub-module, we define the internal difference of a component
(Int(C)) C ⊆V to be the largest weight in the minimum
spanning tree of the component, MST(C,E).

Int(C) = max
e∈MST (C,E)

w(e) (1)

We iterate over each edge to evaluate if there is any
evidence of boundary between a pair of components (Ci, Cj)
joined by the edge. Pairwise comparison predicate (D(Ci,
Cj))is used to verify that if the two components are disjoint
and the weight of the edge joining them is less than the
minimum internal difference (MInt) of both the components
then they are merged on basis of threshold function τ using

Eq. 2. Pairwise comparison predicate D(Ci, Cj) is defined as

D(C i, C j) =

{
true if Dif(Ci, Cj)>MInt(Ci, Cj)
false otherwise

(2)

where the minimum internal difference, MInt, is defined as,

MInt(C i, C j) = min(Int(C i) + τ(C i), Int(C j) + τ(C j)). (3)

and the difference between the two components Dif (Ci, Cj)
is defined as:

Dif(C i, C j) = min
vi∈Ci,vj∈Ci,(vi,vj)∈E

w(vi, vj) (4)

The threshold function τ used in Eq. 3 is used to control
the degree, to which Dif(Ci, Cj) must be larger than MInt(Ci,
Cj). Threshold function τ , is defined as,

τ(C) = k/|C| (5)

where |C| is the size of the component and k is some constant.
Size based Graph Agglomeration sub-module does merging

of the components based on min size factor. Components
get merged with their neighboring components if their
sizes are less than min size which is defined by the user.
Post-processing and rendering sub-module reconstructs the
modified graph into an image. It also recolors the image
based on the new labels assigned to the pixels. This new
image formed is the segmented output.

III. PROPOSED ARCHITECTURES FOR FPGA

Image segmentation using graph based approach involves
solving equations [1-5] for each component of the graph and
finally merging them based on threshold and min size. This
section delineates the three proposed architectures - sequential,
pipelined and hybrid in detail below:

A. Sequential Architecture

Figure 4 shows the architectural flow of the sequential
implementation. After the initial preprocessing and graph
initialization, as explained in the previous section, the sorted
values of Va, Vb and W are stored in three different Dual
Port BRAMs. Due to dimensional constraints, while storing
in BRAM, each address of BRAM corresponds to four data
segments. Every vertex has four attributes namely rank, label,
threshold and size. All labels are assigned a different value
and size 1 because initially each vertex is considered as a
different component. Threshold for all vertices is assigned

Fig. 4: Block diagram of proposed Sequential Architecture

the same value as that of the global threshold. After variable
declaration and initialization, these values are stored in four
different Dual Port BRAMs. These seven BRAMs are sent as
input to Finite State Machine which updates the four attributes
based on threshold criterion as explained in Eq. 1-5. An
analogous Finite State Machine is used for merging segmented
components based on min size. The modified graph obtained
is then reconstructed into an image. Random color assignment
is done to the pixels, based on final updated labels.

Sub-modules used to implement this algorithm are as fol-
lows:
• Finite State Machine for Segmentation: The Finite

State Machine module(Fig. 5) is used for implementing
the blocks - threshold based graph agglomeration and size
based graph agglomeration. As shown in Fig. 4, seven
BRAMs are sent as input to the block Threshold Based
Graph Agglomeration. Depending on the value of ad-
dress, we read values from Va, Vb and W BRAMs. Each
Va, Vb and W corresponds to the undirected weighted
edge between them. As soon as Va, Vb are read, find
modules are used to obtain their corresponding parent
labels.

Fig. 5: Finite State Machine Architecture

These two parent labels representing components are
given as an input to the join module which decides
whether to merge the components or not based on
threshold criterion (Eq. 2). Find and Join modules
are explained in the sub-section below. When the join
module asserts the signal done, counter and address are

updated as per the requirement. Once all the edges have
been traversed the state machine is terminated. This state
machine updates the four attributes - rank, label, size
and threshold. These updated BRAMs are again sent as
input to a similar Finite State Machine which merges
components based on min size and re-updates those
four attributes. Once all the edges have been traversed
the state machine is terminated.

• Find module: The Find module (Fig. 6) is used to search
the parent label of the current component. A component
when merged with any other component, gets the new
label using set union find algorithm[18]. This updated
label is stored in the Label BRAM and further given as
an output for later modules.

Fig. 6: FIND Module Architecture

• Join module: The Join module (Fig. 7) is used for merg-
ing the 2 components. This module is used in Threshold
based Graph Agglomeration state machine (Fig. 4) and is
used to merge components based on threshold criterion
(Eq 2). In Size based graph agglomeration, this module
is used for merging components based on min size cri-
terion as explained in Section 2. Rank based set union
algorithm[18] is used to implement this algorithm and
reduce time complexity.

This sequential architecture uses these above modules as
shown in Fig. 4. It exploits the gate level control provided
by an FPGA and henceforth, allowing to control over minute
details of the arithmetic design which is not possible in CPU
implementation.

Fig. 7: JOIN Module Architecture

B. Pipelined Architecture

Figure 7 shows the process flow for the pipelined imple-
mentation of this algorithm. In the fig. , all steps in one
horizontal row are executed parallelly and as we move to next
row, all previous tasks would be completed. Due to sequential
nature of the sub-modules, internal Pipeline processing is
possible. While preprocessing of image and graph formation
is being done, simultaneously initialization of the four BRAM
can be done as these are mutually exclusive. Also, the edge
weights can be computed row wise in parallel thus, graph
formation time can be reduced to O(n) from O(n*n). Even
for random recoloring, since colors depend only on the label
assigned, similar reduction in time complexity is seen. Dual
port BRAMs have two independent access ports. Exploiting
this as soon as the first set of sorted Va, Vb and W are stored
in BRAM, the FSM for segmentation based on threshold can
start executing the first iteration. Using this also find and join
operations can be pipelined with the write operation. This
substantially reduces the time. Further finding the parent labels
of Va and Vb are independent processes and can be executed
together. Since there are different dual port BRAMs for label,
rank and threshold, find and updating threshold operations are
pipelined. Similarly, read and join operations are pipelined.
Independent dual port BRAMs also allow reading the labels
before threshold based merging is finished. Thus, the last
iteration of threshold based merging is pipelined with the first
iteration of min size based merging. Thus by making elegant
modifications in the sequential architecture, it is possible to
save a tangible amount of clock cycles.

C. Hybrid Architecture

When there is no limit to the number of resources that can
be used, Hybrid architecture can be designed as shown in Fig
9. This architecture is a full fledged parallel and pipelined
implementation of the algorithm. By taking advantage of
parallelism provided by an FPGA, we use multiple copies of
sub-modules and use them in parallel.

An input image can be divided into n parts, and each part
will then undergo independent pre-processing, Graph initial-
ization and Threshold based Graph agglomeration. Now, these
parts are merged using Horizontal and Vertical stitching. This
new stitched image undergoes size based graph agglomeration
and random recolouring based on new labels. The value of n

Fig. 8: Process flow of the pipelined architecture

needs to be chosen judiciously. If n is very large then due
to the limited number of resources on FPGA, this hybrid
architecture will not work. Also, larger n implies smaller sub-
images, which may result in loss of information while merging
based on threshold and stitching.

This flow is illustrated with an example below.

Fig. 9: Block diagram of proposed Hybrid Architecture

As shown in a fig. 9, the input image is divided in 4
parts. Each sub image undergoes pre-processing parallelly.
This smoothened sub-images undergoes segmentation based

