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Abstract—India is a multilingual society having more than 1600
languages. Most of these languages are having an overlapping
set of phonemes. This makes developing language identification
(LID) framework difficult for Indian languages. In this paper,
the above challenge is addressed using phonetic features. To
model the temporal variations in phonetic features, attention
based residual-time delay neural network (RES-TDNN) is pro-
posed. This network effectively captures long-range temporal
dependencies through TDNN and attention mechanism. The
proposed network has been evaluated on IIITH-ILSC database
using phonetic and acoustic features. The database consists of 22
official Indian languages and Indian English. Attention based
RES-TDNN outperformed the other state-of-the-art networks
such as deep neural network, long short-term memory network
and produced an equal error rate of 9.46%. Further, the fusion
of shifted delta cepstral and phonetic features have improved the
performance.

Index Terms—Attention based residual-time delay neural net-
work, Equal error rate, Language identification system, Multi-
head

I. INTRODUCTION

Language identification (LID) is a task to identify the
language from a spoken utterance. With an efficient LID
system, human-computer interface applications can be more
productive and reach multilingual socities [1]. LID system
employed at front-end for a broad range of multilingual speech
systems, such as spoken language translation, multilingual
speech recognition, service customization, and forensics [2].
Performance of the LID system depends on the efficient
representation of language information and effective methods
for language classification.

The early-stage research on LID systems uses statistical
models like Gaussian mixture models, hidden Markov models,
and support vector machines (SVM) at the model level [3]–
[5]. The i-vector techniques with conventional classifiers such
as SVM, probabilistic linear discriminant analysis have been
demonstrated their effectiveness and obtained state-of-the-art
performance [6]. Later, deep neural networks (DNN) have
been explored and shown excellent performance [7]. However,
in DNN, frame level decisions are averaged over an utterance
to predict language ID instead of utterance level decision
(language information is present more precisely at utterance
level than frame level). Sequential networks such as recurrent
neural networks (RNN) and long short-term memory networks
(LSTM) are used to predict language ID through modeling the
long temporal information [8]. Even though these sequential

networks process the whole input signal at a time, they cannot
be parallelized and are computationally intensive. Recently
self-attention networks and Bi-directional DNN with gated
recurrent neural units are proposed in [9], [10]. End to end LID
systems using convolution neural network, LSTM, and atten-
tion based hierarchial gated recurrent units are explored [11]–
[13].

At the feature level, shifted delta cepstral (SDC) coefficients
are state-of-the-art acoustic features for LID [14]. These
features are obtained from augmentation of the conventional
Mel-frequency cepstral coefficients (MFCC) to capture long-
term temporal context. Features which are embedded with
contextual information learned from a network in a non-linear
discriminant fashion can effectively represent the language
information and are robust to noise as compared to conven-
tional acoustic features [15]. In this context, log-likelihood
ratios, stacked bottleneck, and multilingual tandem bottleneck
features have been used for LID, and these outperformed
the standard features [15]–[17]. Time delay neural network
(TDNN) acoustic model is used to convert the acoustic se-
quence into a phoneme sequence [18]. In [19], senone based
LSTM-RNN framework is investigated to extract phonetic
features.

Most of the works in the literature on Indian LID have
been focused on prosody and spectral features [20]. In [21],
language specific features are extracted from CV transition
regions and steady vowel regions. Hilbert envelops and phase
information of linear prediction residual are explored in [22].
Power normalized features [23], implicit excitation source
features [24], and phase information related features [25] are
studied. Recently, DNN with attention architecture is explored
using MFCC features [9]. This paper explores the phonetic
features and deep neural networks for LID which are not well
explored in the Indian scenario.

We proposed attention based RES-TDNN for Indian LID
task. The motivation for this work is that TDNN better models
the long-range temporal dependencies [26] which play a vital
role in LID. Frame level log likelihood scores obtained from
the acoustic model of ASR are used as phonetic features.
IIITH-Indian language speech corpus (ILSC) is used to carry
out LID experiments [27]. To the best of our knowledge LID
with attention based RES-TDNN using phonetic features is
the first time explored.

This paper is structured as follows: Section II describes
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the fundamental architectural aspects of attention based RES-
TDNN. The experimental setup is explained in Section III. In
Section IV results and discussions are reported. The conclusion
is presented in Section V.

II. ATTENTION BASED RESIDUAL-TIME DELAY NEURAL
NETWORK

The architecture of RES-TDNN with attention is described
in Fig. 1.
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Fig. 1. Block diagram of attention based RES-TDNN. The input to the
network is either acoustic or phonetic features.

The network contains four blocks, i.e., (i) stacked RES
blocks (ii) TDNN block, (iii) attention statistics layer, (iv)
and output layer. The entire network is trained with a single
objective function in an end to end fashion to maximize
language identification accuracy.

• Stacked RES blocks are act as feature extractors which
takes an acoustic sequence as an input and transform
these features to a higher level representation. Each
RES block contains several feed forward layers followed
by a non-linear activation function. This stacked block
structure allows skip connections between layers.

• TDNN effectively captures long-range temporal depen-
dencies through learning affine transformations on dif-
ferent length context windows. In general, initial layers
learn these transformations on narrow context window
and deeper layers on a wider context window.

• Attention statistics layer aggregates frame level features
by selecting prominent frames. It computes a scalar value
for every frame that specifies the relative importance of
each frame. The utterance level representation is obtained
by concatenating the mean and standard deviation of the
weighted hidden layer representations.

• Output layer is a feed forward layer which takes utter-
ance level representation and computes softmax proba-
bility scores for each language.

The pipeline of architecture from input acoustic/phonetic
sequence to language ID is shown in Fig. 2.

Input Residual TDNN Attention Output Language
HX

ID

[µ σ]

layermechanism

Fig. 2. Input flow in attention based RES-TDNN.

Let X = [x1, x2, x3, ...., xL] be an input acoustic sequence.
Here L is the length of input sequence. Data flow in RES
block can be explained using the below two equations:

Y = f(X) +X (1)

ORES = ReLU(Y ) (2)

where, f(X) is the output of last layer in RES block without
non-linear activation function and ORES is the output of RES
block. The final RES block output is passed through TDNN
block and H = [h1, h2, h3, ..., hL] be the corresponding
output. From these hidden activations (H), attention statistics
layer computes a scalar value for every frame as follows:

et = tanh(WaH
T ) (3)

where Wa are attention layer parameters. The values of et are
normalized using a softmax function as follows:

αt =
exp(et)∑L
t=1 exp(et)

. (4)

The mean and standard deviation of weighted hidden activa-
tions are computed as given below:

µ =

L∑
t=1

αtht (5)

σ =

√√√√ L∑
t=1

αtht � ht − µ� µ (6)

where � represents Hadamard product. Both weighted mean
and standard deviation vectors are concatenated and given as
an input to the output layer to predict the language ID.

In the proposed network, multi-head attention is also ex-
plored with the intuition that each head captures unique
discriminant information. Multi-head attention can be im-
plemented with ease by increasing the number of attention
statistics layers. Final utterance wise representation is obtained
by concatenating each attention layer representation. In the
case of multi-head, the objective function (cross-entropy) is
penalized by the factor (ε) as defined below to ensure each
head captures unique information [28].

ε = ||WaW
T
a − I||2F (7)

where ||.||F represents the Frobenius norm of the matrix and
T represents transpose of a matrix. Implementation details of
the architecture have been explained in Section III.



III. EXPERIMENTAL SETUP

This section briefly gives details of the database, baseline
and proposed LID systems.

A. Database

To evaluate the performance of the proposed network,
we have considered IIITH-ILSC database. It consists of 23
languages, Assamese, Bengali, Bodo, Dogri, Gujarati, Hindi,
Kannada, Kashmiri, Konkani, Maithili, Malayalam, Manipuri,
Marathi, Nepali, Odia, Punjabi, Sanskrit, Santali, Sindhi,
Tamil, Telugu, Urdu, and Indian English. Details of the
database are listed in Table I. It contains data from both

TABLE I
DETAILS OF IIITH-ILSC DATABASE.

IIITH-ILSC
Number

of speakers
50 (25 male and 25 female

for each language)
Amount of data 4.5 hours for each language

Duration of utterances 5-10 sec
Sampling frequency 16kHz

noisy and clean environments. Sample wave files from the
database are available in the link: https://researchweb.iiit.ac.
in/∼mandava.tirusha/LID IC3 19.html.

B. Baseline Features

This sub-section briefly explains the extraction of different
baseline features used for developing the LID systems. In
this study, standard features like MFCC, SDC, i-vector, and
phonetic are used as baseline features.

• MFCC features are extracted from 20 ms windowed
speech signal with an overlap of 10 ms having dimension
40. First and second order derivatives are added to these
features resulting in a 120-dimensional feature vector.

• SDC features are computed from MFCC by concate-
nating delta cepstral coefficients over multiple frames.
Extraction of these features involves four parameters
N (number of cepstral coefficients), d (delta distance
between acoustic vectors), p (distance between blocks), k
(total number of successive blocks used to compute SDC
features). This work uses widely used 7-1-3-7 (N-d-p-
k) configuration to compute SDC features resulting in a
56-dimensional acoustic vector [29].

• i-vector features are computed using Kaldi i-vector script.
Extraction involves universal background model, which
consists of 2048 Gaussian mixtures trained with 40-
dimensional MFCC features and dimension of the ex-
tracted i-vector is 100. For every 10 frames, one i-vector
is extracted.

• Phonetic features are computed from the 40-dimensional
MFCC vector as follows. For every MFCC vector (xt),
phone posterior probabilities are computed from the
acoustic model which is trained on Microsoft data [30]
using DNN. These posterior probabilities are considered
as phonetic features in this work and dimension is 70.

C. Baseline LID systems

In this study, three different networks are used as baseline
LID systems namely DNN, DNN with residual connections
(DNN-RES), and LSTM. Training of all networks used Adam
as an optimizer. Learning rate is halved upon observing an
increase in validation cost. The training is halted upon en-
countering an increase in validation cost over three successive
epochs. In DNN, DNN-RES a symmetric 4 frame window
and in LSTM a symmetric 2 frame window is used to splice
adjacent frames. In all networks, hidden units are followed
by ReLU activation function and networks are trained with
cross-entropy objective function. All the above networks are
implemented using pytorch.

Finer details of all networks are explained below.
• DNN architecture used in this work is a fully connected

feed forward neural network with the same architecture
in [27]. It contains four hidden layers and the number of
units in each layer is set to be 1024.

• DNN-RES network contains four residual blocks, and
each block contains two hidden layers with the same
architecture as described in [31]. The first hidden layer
has 1024 units and the second hidden layer has a number
of units equal to the input dimension. The output of the
second hidden layer is added to the input and is given as
input to the next residual block.

• LSTM network contains two hidden layers in which each
layer is followed by a projection layer of dimension equal
to the hidden layer. Each layer contains 320 cells.

D. Proposed RES-TDNN with attention

RES-TDNN with multi-head attention network contains five
RES blocks and one TDNN block. Each RES block contains
three layers, in which the first and third layer having a number
of units equal to the input feature dimension and the second
layer having 1024 units. TDNN block contain three layers
with temporal context [-1, 1], [-2, 2], [-3, 3] with 256 units
respectively. Attention layer is a single feedforward layer
which computes utterance wise representation with dimension
equal to the dimension of last hidden layer of TDNN block.
The output layer contains a number of units equal to the
number of language classes.

IV. RESULTS AND DISCUSSION

Our work aims to improve the performance of LID systems
in the Indian scenario. In this connection, attention based RES-
TDNN architecture is proposed and is compared with state-
of-the-art networks using phonetic and acoustic features. The
multi-head attention mechanism is investigated in the proposed
architecture. Further, using this network fusion of acoustic and
phonetic features are studied at the network level and feature
level. In this paper, the performance of the LID system is
presented in terms of the equal error rate (EER).

A. LID system using Multi-head attention based RES-TDNN

The performance of proposed attention based RES-TDNN
and baseline architectures using different features are listed

https://researchweb.iiit.ac.in/~mandava.tirusha/LID_IC3_19.html
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in Table II. The experimental results have shown that the
proposed network outperformed the other networks. The best
performance of attention based RES-TDNN can be attributed
to two factors. The first factor is that efficient long-term
temporal modeling capability of TDNN and second is that
aggregation of frame level features by attention layer to
predict language ID instead of taking frame level decisions
in other networks. At the feature level, phonetic features have
better performance compared to the other features. From these
observations, it is speculated that long temporal information
is playing a vital role in LID either at feature level or network
level.

TABLE II
BENCHMARK COMPARISON (EER IN %) OF LID SYSTEMS.

Network Features
MFCC SDC i-vector Phonetic

DNN 22.42 17.95 14.72 13.34
DNN-RES 21.87 17.12 14.25 12.56

LSTM 20.05 16.59 14.08 12.22
Attention based

RES-TDNN 15.45 13.81 13.68 9.46

The multi-head attention mechanism is investigated in the
proposed network, and the results are tabulated in Table III.
It can be seen that using multi-head attention has improved
the performance of LID systems. The improvement in the
performance can be associated with its better utterance wise
representation (each head captures distinct information) com-
pared to the single-head attention.

TABLE III
RESULTS (EER IN %) OF LID SYSTEMS TRAINED USING MULTI-HEAD

RES-TDNN.

Number of heads SDC Phonetic
1-head 13.81 9.46
2-head 14.05 9.47
3-head 12.82 8.82

B. Analysis of phonetic and acoustic (SDC) features using
attention based RES-TDNN

Combination of SDC and phonetic features at the network
level (fuse the scores obtained from the individual models) and
at feature level (train a network by concatenating SDC and
phonetic features) has a significant improvement compared to
the individual models. These results are presented in Table IV.

TABLE IV
RESULTS (EER IN %) OF LID SYSTEMS WITH THE FUSION OF ACOUSTIC

AND PHONETIC FEATURES.

Number of
heads

Fusion at
network level

Fusion at
feature level

1-head 7.75 8.55
2-head 7.94 8.48
3-head 7.42 8.22

Further, we briefly discuss the confusion between languages
in acoustic (SDC) and phonetic space. Fig. 3 and 4 represents
confusion matrix for 23 languages using phonetic and acoustic
features respectively. The following observations are noted
from the confusion matrices.

1) In acoustic space,
a) Marathi is confused with Gujarati.
b) Kokani is confused with Sindhi.
c) Kannada is confused with Manipuri.
d) Malayalam is confused with Sindhi.

However, in phonetic space above language pairs are
distinguishable. This may be due to these language
pairs have similar sound units in acoustic space, but
the characteristics of these sound units are different
(due to phonotactic constraints) in phonetic space. This
assumption is proved in the case of Marathi and Gujarati
since these languages have similar sounds [32].

2) Hindi is confused with Urdu in phonetic space indi-
cating that both the languages are phonetically similar
structure. It is also observed that Hindi (92%) and Urdu
(78%) accuracy is high in acoustic space.

3) The accuracy of some languages such as Telugu (33%
to 92%), Tamil (49% to 90%), and Malayalam (44%
to 81%) is significantly improved in phonetic space as
compared to the acoustic space.

Fig. 3. Confusion matrix for attention based RES-TDNN using phonetic
features.

V. CONCLUSION

In this paper, attention based residual-time delay neural
network is proposed for Indian language identification. This
network is trained using phonetic features extracted from
the acoustic model of an automatic speech recognizer. The
proposed network outperformed state-of-the-art methods and
produced an equal error rate of 9.46%. Multi-head attention
further improved performance. The best performance noticed
in this work is with the fusion of shifted delta cepstral and
phonetic features at the network level having an EER of
7.42%. The consistency of the network has to be studied with
short duration utterances. Our future studies are targetted in
the presence of noise and other mismatched conditions.



Fig. 4. Confusion matrix for attention based RES-TDNN using acoustic
(SDC) features.
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