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Abstract

Consider a scenario wherein a bank with a large database of customer information intends to
identify the set of customers to whom a credit line could be extended. For this, the bank might
need various other information, apart from its own database, such as tax information from the
income tax department, criminal history of the customers from the law enforcement authori-
ties etc. Although all the other parties might be willing to share their respective information
(databases) in order for the banking organization to compute the result, they might not be will-
ing to compromise on the privacy of their databases. To preserve the privacy of the individual
data, in an idealistic world, all parties could send their data to a Trusted Third Party (TTP)
which would then apply any of the data mining techniques to compute the intended result and
share it with the banking organization. The bank would only get to know the final set of cus-
tomers to whom a line of credit could be extended and any local information with other parties
would not be revealed other than what could be computed from the final result itself. However,
in the real world, in many instances it would be infeasible to find such a Trusted third party with
whom all the other sources of data would be willing to share their information. To overcome
such problems, Privacy Preserving Data Mining techniques have been developed which allow
the computation of a function on various databases distributed across a set of players, with out
either party learning anything about the data of the other parties other than that can be derived

from the final result itself. In other words, these techniques simulate the functionality of a TTP.

In this thesis, we consider the problem of Privacy Preserving outlier Detection(PPOD) over
vertically partitioned data. The computational and communication complexities of the pro-
posed PPOD algorithm are sub-quadratic in the size of the dataset as opposed to the quadratic

complexities of the previously known results. In order to achieve efficient algorithms in the pri-

vi
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vate setting, we first develop an approximation algorithm for outlier detection in the centralized

setting and then extend it to the case of privacy preserving outlier detection.
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Chapter 1

Introduction

In the current age of information explosion, tremendous amounts of data is being gener-
ated through various channels such as the Internet and mobiles etc and advances in hardware
technology has facilitated the storage of these large amounts of data by various organizations.
However, storage of all this data would not be of much use unless meaningful information
can be extracted from it. The emergence of Data Mining as a research area has answered this
need through various techniques such as Classification, Clustering etc. But in recent years,
data mining is increasingly being viewed as a threat to privacy of the data due to the sensitive
nature of individual data being gathered. This has led to the emergence of Privacy Preserving
Data Mining (PPDM) techniques whose aim is to preserve the privacy of individual data while

mining the data.

Privacy In Data Mining

The need for privacy while mining the data arises in two classical settings (although may
not be limited to these two cases). The first is where some statistical data has to be released
containing confidential data, such as a hospital releasing the medical history of various patients
so that it could be used in medical research by other organizations. Although this research could
provide very useful information, the major detriment in releasing this data is the violation of
the privacy of individual data. The aim of PPDM techniques in this setting is to facilitate the

release of such sensitive data in a way that meaningful research could be carried on it but at



the same time which does not reveal individual data. The other setting where need for privacy
of data arises is that of data being held by two or more players who would like to mine the
union of their data to discover some meaningful information. The aim of PPDM techniques
in this setting is to enable the players to apply data mining algorithms on their combined data
while preserving the privacy of individual data i.e., the data held by one player should not be
revealed to any other players in the process of extracting patterns from their combined data. The
partitioning of data among multiple players could be in two different ways namely Horizontal
Fartitioning and Vertical Partitioning. In the former, each player has information about all the
attributes for different objects where as in the latter, each player has information about a subset
of attributes for all the objects in the dataset. Both kinds of partitioning pose different set of

challenges while developing distributed privacy preserving algorithms.

Privacy Preserving Data Mining Methods

Privacy Preserving Data Mining techniques developed over the years are classified into two
categories based on the underlying methods used for achieving privacy namely Data Modifica-

tion and Secure Multi-party Computation (SMC).

e Data Modification: Privacy preserving data mining algorithms based on Data modifica-
tion techniques modify the original dataset before releasing to others. Data is modified in
such a way that privacy is preserved in the released dataset while maintaining high qual-
ity of data so as to enable others to perform data mining and extract useful information.
The aim is to maintain a balance between the level of privacy and the level of informa-
tion that could be mined from the released dataset. Data modification methods could be
developed to protect the privacy of individuals or confidential underlying data or both.

These techniques include noise addition, data swapping, aggregation and suppression

Noise addition, as the name implies, adds random noise to the original data. The noise
added is sufficiently large so that individual data values can no longer be recovered.
Data swapping interchanges the attribute values among different data objects (records).

Similar attribute values are interchanged with more probability. Aggregation may in-
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Figure 1.1 A Classification of Privacy Methods

volve either combining a few attribute values into one or grouping multiple data objects
and replacing them with a group representative. Suppression involves replacing an at-
tribute value in one or more objects by a missing value. Data modification based PPDM
algorithms have the benefit that they are computationally efficient but suffer from the
drawback that loss of information is high as the original data has been modified. Also,

these methods do not provide formal guarantees for the level of privacy provided.

e Secure Multi-party Computation: Secure Multi-party Computation based PPDM al-
gorithms use cryptographic tools to protect the privacy of data and are developed in the
context of data partitioned across multiple players who wish to compute a function on
their joint data. The aim of the SMC techniques is that no new information is revealed to
any of the participating players other than what can be computed from the final result of
the computation. These methods have the advantage that they provide formal guarantees
for the level of privacy provided. But the cryptographic tools used usually involve very

high computational and communication costs while performing distributed data mining.

In this work, we use SMC based techniques and consider the problem of Privacy Preserving
Outlier Detection (PPOD) where two or more players wish to compute the outliers from the
union of their individual data while preserving the privacy of the local data with each player.

This problem was first studied by Vaidya et al in [31] where the authors use the definition for



distance based outliers provided in [18], and give PPOD algorithms for both horizontal and
vertical partitioning of data. Subsequently, a PPOD algorithm using the k-nearest neighbor
based definition [24] was given in [40] , considering only vertical partitioning. However, both
of the above mentioned algorithms have quadratic communication and computation complexi-
ties in the database size, making them infeasible while dealing with large datasets. To the best
of our knowledge, no other work in the field of PPDM based on cryptographic techniques has

addressed distance based outlier detection.

Contributions of this Thesis: In this thesis, we propose approximate PPOD algorithms
for the case of vertical partitioning of data based on cryptographic techniques. As opposed to
the current PPOD algorithms which provide privacy for already existing (non-private) outlier
detection algorithms, we develop a new outlier detection scheme for the centralized setting in
order to achieve efficient algorithms in the private setting. The centralized scheme is based
on the Locality Sensitive Hashing (LSH) technique [14] and could be of independent interest.
We also give theoretical bounds on the level of approximation and provide the corresponding
empirical evidence.

The computational complexity of our centralized algorithm is O(ndL) for d dimensional

dataset with n objects. The parameter L is defined as n'/1+¢

, where € > ( is an approximation
factor. The computational complexity of the PPOD algorithm for vertically distributed data is
same as that of the centralized algorithm which is a significant improvement over the previous
know result of O(n?d). The communication complexity in vertically distributed setting is

O(nL) which is again an improvement from the quadratic complexity in dataset size.

1.1 Overview of our Approach

Our outlier detection scheme uses the definition for a distance based outlier proposed by

Knorr et al.[18], given as below:

Definition 1 D B(p,, d;)outlier: An object o in a dataset D is a DB(py, d;) outlier if at least

fraction p; of the objects in D lie at a distance greater than d; from o.



where D B(py,d;) is a shorthand notation for a Distance-Based outlier detected using pa-
rameters p; and d;. In our approach, we use the converse of this definition and say an object
is a non-outlier if it has enough neighbors (p}) within distance d;, where p, = (1 — p;) x |D|.
Since the fraction p; is very high (usually set to 0.9988), the modified point threshold p; will
be very less compared to the number of objects in D. This allows us to easily detect most of
the non-outliers by finding p; objects within distance d, (d; is almost comparable to the data

spread).

To efficiently find the near neighbors, we use the Locality Sensitive hashing technique.
Given a set of objects, the LSH scheme hashes all the objects in such a way that all those
objects within a specified distance are hashed to the same value with a very high probability.
This way, all those non-outliers in the data which have many near neighbors can be identified
easily, without calculating the distances to every other object in the dataset. Moreover, using
LSH properties, whenever we identify a non-outlier we will be able to say most of its neighbors
as non-outliers without even considering those objects separately. Thus, we obtain a very
efficient pruning technique where, most of the non-outliers in the dataset can be easily pruned
and a very small percent of the objects in the dataset need to be processed after pruning. The
remaining points after pruning are the set of probable outliers which will contain very few non
outliers. To further remove these non outliers, we use the probabilistic nature of LSH. The idea
is to take the intersection of the sets of probable outliers over multiple runs, to output the final
set of approximate outliers. The approach works because each set of probable outliers will
contain the actual outliers with extremely high probability, but the non outliers in each set will

differ with high probability.

In case of privacy preserving outlier detection over vertically distributed data, all players first
communicate to obtain the LSH binning of all the objects considering all the attributes. Next,
the players locally compute the probable outliers using the global LSH binning information.

We consider Honest-But-Curious(HBC) adversary model in our privacy preserving algorithms.
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Figure 1.2 General Hashing versus Locality Sensitive Hashing
1.2 Locality Sensitive Hashing

The idea of Locality Sensitive Hashing was first introduced in [14]. Whereas in general
hashing collisions are avoided, in the case of LSH such hash functions are desired in which
points that are nearby are hashed to the same hash bucket with a very high probability. Mathe-

matically, this idea is formalized as follows [14]:

Definition 2 A family H = h : S — U is called (11, r2, p1, p2)-Sensitive if for any two objects
p,qins:

if d(p,q) <71 : Prih(p) = h(q)] > m (1.1)
if d(p,q) > 12 : Prih(p) = h(q)] < p2 (1.2)

where d(p, q) is the distance between objects p and g.

For the hashing scheme to be locality sensitive, two conditions to be satisfied are r, > r; and
p2 < pi1. In order to amplify the gap between the “high” probability p; and “low” probability
p2, standard practice is to concatenate several hash functions to obtain a function family G =

{g : S — U*} such that g(p) = (h1(p), ha(p), ..., hx(p)); where k is the width of each hash



function and h; € H. For a hash function family G, the probabilities in Equation 1.1 and 1.2

are modified as:
if d(p,q) <1 : Prig(p) = g(q)] > p} (1.3)

if d(p,q) >r2: Prig(p) = g(q)] < ph (1.4)

During LSH, each object o € D is stored in the bins g;(0) for j = 1,2...L; where each g¢
is drawn independently and uniformly at random from G 1i.e., each object is hashed using L

hash functions drawn from G and stored in the corresponding bins. The optimal values for the

Inl/p1

Inl/ps" For

parameters k and L are computed as[14]: k = log/,,n and L = n” where p =
more detailed introduction on LSH refer [14] [10].
The LSH Scheme explained above can be used to solve the Nearest Neighbor problem

which is defined below [10]:

Definition 3 (Nearest Neighbor): Given a set D of objects in a d-dimensional Euclidean space
R? preprocess D so as to efficiently answer queries by finding the object in D closest to a query

object q

The above definition could be extended to the case K — Nearest Neighbor search where we
wish to return the K objects in the dataset that are closest to the query object. The approximate

version of the NearestNeighbor problem is defined as follow:

Definition 4 (e-Nearest Neighbor): Given a set D of objects in a d-dimensional Euclidean
space R%, preprocess D so as to efficiently return an object o € D for any given query object
q, such that d(p,q) < (1 + €)d(q, D) where d(q, D) is the distance of q to its closest object in
D.

The e-Nearest Neighbor(e-NN) problem can be reduced to the (R, ¢)-NN problem, which
is a decision version of the nearest neighbor problem [7], where ¢ = (1 + €). The (R, ¢)-NN
problem is solved by using the LSH scheme on the dataset D by setting the parameter r, = R
and 7, = cR. To process the query ¢, all the bins to which ¢ is hashed to are searched and for

each object o in those bins, if d(0, ¢) < o YES is returned, else NO is returned.



1.3 Cryptographic Primitives

In this section, we briefly present an outline of the SecureSum protocol we use as part of

our privacy algorithm and also give an overview of the Adversary model we consider.

1.3.1 Secure Sum Protocol

SecureSum is a cryptographic protocol which is extensively used as a building block in
many privacy tasks in the areas of privacy preserving data mining, privacy preserving machine
learning etc. A SecureSum protocol facilitates three or more players py,....p, t > 3, each
with a secret number v;, to securely compute the sum of their numbers V' = 25:1 v;. In [5],
the authors propose a secure sum protocol, along with other tools for privacy data mining like
secure set union, secure scalar product and size of set intersection. Assuming that the value
V = Zﬁzl v; to be computed lies in the range [0, .., n|, one player is designated as master site
numbered 1. The remaining players are numbered 2, .., . Player 1 generates a random number
R uniformly chosen from [0, .., n]. Player 1 adds this number to its secret value v; and sends
the sum to player 2. For each player from 2 to n, the local secret number is added to the number
received from player i-1 and passed on to the next player. Player t sends the final sum back to
1. Player 1 subtracts the random number R generated to obtain the final sum.

This algorithm considers only honest-but-curious adversaries and does not handle collu-
sions. More sophisticated secure sum protocols, which handle collusions, have also been stud-
ied in [17][30]. Note that our PPOD algorithm uses SecureSwum as a black box and does not

depend on its the underlying implementation.

1.3.2 Adversary Model

We give a brief description of the two adversary models namely Honest-But-Curious adver-
saries and Malicious adversaries.
Honest-But-Curious Adversary: Honest-But-Curious adversaries follow the protocol cor-

rectly but try to learn as much other information as possible. Security against such adversaries
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Figure 1.3 A 3-Player SecureSum protocol

is straight forward: no player or coalition of ¢ < n honest-but-curious players gain any in-
formation about the other player’s private input sets other than what can be deduced from the
result of the protocol. The ideal implementation for such protocol is to consider a Trusted Third
Party which receives information from all players and outputs the result of the defined function.
The aim for real implementation of the protocol is to simulate such a TTP where each player
does not learn more information than in the ideal implementation with a very high probability.

Honest-But-Curious adversary may also be called “Semi-honest” or “passive” adversary.

Malicious Adversary: As opposed to Honest-But-Curious adversaries who follow the proto-
col correctly, Malicious adversaries may behave arbitrarily in order to learn private information
of the honest players. Specifically, such adversaries may (1) Send arbitrary messages or drop
messages they are supposed to send (2) refuse to participate in the protocol (3) prematurely
abort the protocol or (4) tamper with the communication channels. Security definition under

such a scenario is limited to the case where at least one of the participating players is honest.

Formal definitions for adversary models can be found in [11]. As has been mentioned, we

consider Honest-But-Curious adversaries in this work.



1.4 Thesis Outline

In Chapter 2, we first give a brief overview of the previous work in the area of outlier
detection. Next we present our approximation algorithm for outlier detection using Locality
Sensitive Hashing, along with theoretical bounds on level of approximation.

In Chapter 3, we extend the outlier detection algorithm for centralized setting to a dis-
tributed setting with vertical partitioning of data, considering privacy. The PPOD algorithm
uses p-stable distribution based LSH. A brief overview of the previous work is also presented
in this chapter.

In Chapter 4, we give empirical evidence of the performance of the proposed algorithms
by running them on various datasets.

In Chapter 5, we give an extension of our centralized outlier detection algorithm to a PPOD
algorithm considering horizontal distribution of data. The work presented in this chapter is not
a contribution of this thesis and is presented for the sake of completeness.

In Chapter 6, we give conclusions and a few possible extensions for the work presented in

this thesis.

10



Chapter 2

Outlier Detection in Centralized Setting

Outlier detection has been extensively researched in the recent past due to its application in
various fields such as fault detection, medical diagnosis, measuring eco system disturbances
etc. Outliers are observations in a data that appear to be inconsistent with the remainder of
that set of data and are present in virtually every real world data set. These outliers could
be the result of various reasons such as human error or instrument error or malicious activity
such as network intrusion or natural deviations in populations and so on. Outlier detection
is important for mainly two reasons: (1) In many data analysis tasks, outliers need to be de-
tected and removed before processing the data, in order to enhance system performance. (2) In
some applications, outlier detection in itself is crucial since the outliers provide useful or even
critical information. These applications include credit card fraud detection, network intrusion
detection or identifying new molecular structures in pharmaceutical research. There exist a
few definitions for outliers which are considered general enough to cope with various types of
data. Hawkins [13] defines an outlier as “an observation that deviates so much from the other

observations as to arouse suspicion that it was generated by a different mechanism”.

In the following section we give a brief overview of the previous work and present our

algorithm for Outlier detection in the subsequent section.

11



Figure 2.1 Outliers in a dataset
2.1 Previous work

Outlier detection methodologies could be broadly classified into four major categories,

namely:
1. Statistics Based
2. Distance Based
3. Density Based
4. Clustering Based

We give a brief overview of each of these with more emphasis on distance based methods as
the outlier detection algorithm presented in this work is a distance based approach. For a more

detailed survey on outlier detection methodologies refer [4, 38].

Statistics Based: The foremost algorithms for outlier detection have been statistics based

[26, 34]. These methods are further divided into two categories namely the parametric methods

12



and the non-parametric methods. The major difference between these two methods is that the
parametric methods assume that the underlying distribution of the data is known while the
non parametric methods do not assume any such knowledge. The statistical outlier detection
methods are composed of two stages i.e., training stage and testing stage. A statistical model
based on the given data is built in the training stage and in the testing stage a given data object

is determined to be an outlier or not with respect to the model built.

The key limitation of statistical based outlier detection methods are that they do not scale
well to high dimensional data. Also, particularly for the case of parametric methods, their us-

age to real world datasets is very limited since they assume that the data distribution is known.

Distance Based: The distance based methods for outlier detection have the advantage that
they do not assume any underlying distribution of the data and also scale well to high dimen-
sional data in comparison to the statistical based methods. Most of the metrics used for distance
based outlier detection are based on the concepts of local neighborhood or k nearest neighbors
(kNN).

The first notion of distance based outliers, called DB(p;,d;)outlier was introduced by
Knorr and Ng in [18]. According to this definition, an object o in a dataset D is a D B(p;, d;)
outlier if at least fraction p, of the objects in D lie at a distance greater than d; from o. This
definition for finding outliers is suitable where the observed distribution of the dataset does
not fit any standard distribution. To calculate the percentage of data objects falling into the
local neighborhood of each point, three classes of algorithms are presented [18, 19]. The first
one is a nested loop algorithm and is inefficient while dealing with large datasets due to its
quadratic complexity in the database size. The second is a index based algorithm and has a
logarithmic complexity in the database size. However, the construction of index structures is
often expensive and also the quality of the index structure is not easy to guarantee. The third
algorithm is cell-based and is linear in the database size. However, it is exponential in the data

dimensionality and is inefficient for datasets of high dimensions (d > 4).

Ramaswamy et al. [24] propose a slightly modified definition for distance based outliers

using the distance to k" nearest neighbors of each data object, denoted as D* to rank objects

13



so that outliers can be more efficiently discovered and ranked. The definition for a D¥outlier
is given as: Given k and n, an object is a outlier if the distance to its k*" nearest neighbor is less
than the corresponding value for no more than n— 1 other objects in the database. Similar to the
computation of D B(py, d;)outlier, three classes of algorithms namely nested-loop algorithm,
index-based algorithm and partition-based algorithm are proposed to compute D* for each

object efficiently.

Subsequent approaches[1, 2, 29] use efficient data structures and pruning techniques to re-
duce the complexity of outlier detection to near linear in the dataset size. An outlier detection
schema based on the LSH technique was presented in [35]. Their method is based on the defi-
nition of an outlier provided in [24], whereas our approach uses the definition provided in [18].
The major drawback of distance based methods is that a majority of them are not effective to

high dimensional data due to the curse of dimensionality.

Density Based: In density based outlier detection methods, instead of computing the dis-
tance to other database objects, the relative density of each object with respect to those of
neighboring objects is considered. The number of objects with in a specified local region (grid
region or distance based region) of a particular data object is used to define local density which
can then be converted into outlier scores. In order to achieve this, the data is aggregated be-
fore outlier analysis by partitioning the data space. The data objects are then compared to
the distributions in this pre-aggregated data for analysis. The first density based scheme for
outlier detection was proposed in [3], which uses the concept of Local Outlier Factor(LOF).
Subsequently, other schemes for outlier detection using density are proposed in [23, 28]. The
density based outlier detection methods are generally more efficient in finding the outliers than
the distance based methods. However, in order to achieve the improved efficiency, the density

based methods are more complicated and computationally expensive.

Clustering Based: Many data mining algorithms find outliers as a by product of clustering
mechanism. In this method, outliers are defined as objects in a database that do not belong to

any clusters. Thus, the clustering techniques implicitly define outliers as background noise of

14



the clusters. Examples for outlier detection schemes using clustering algorithms can be found
in [9, 12, 39]. These methods are further classified into the following categories based on
the clustering technique used: Partitioning clustering, Hierarchical clustering, Density-based
clustering and Grid-based clustering methods. Clustering is a well researched area and there
are quite a number of clustering algorithms in literature which can be leveraged for the task
of outlier detection. However, one particular and obvious disadvantage of using clustering
algorithms for outlier detection is that they are developed to optimize the finding of clusters in

a dataset and not for finding outliers.

2.2 OQOutlier Detection Using Locality Sensitive Hashing

In this section, we present our approximation outlier detection algorithm for the case of
centralized setting using the Locality Sensitive Hashing technique and give theoretical bounds
on its performance. We use the distance based outlier definition D B(p;, d;) where an object o
in a dataset D is considered an outlier if at least fraction p; of the objects in D lie at a distance
greater than d; from o. In our approach, we use the converse of this definition and say an object
is a non-outlier if it has enough neighbors (p}) within distance d;, where p}, = (1 — p;) x |D|.
Since the fraction p; is very high (usually set to 0.9988), the modified point threshold p} will
be very less compared to the number of objects in D. This allows us to easily detect most of
the non-outliers by finding p; objects within distance d;. To efficiently find the near neighbors,
we use the Locality Sensitive Hashing technique.

The advantage of LSH technique is that if two data points in a high dimensional space are
close, then after a projection to a lower dimension space these points remain close together with
a very high probability. This advantage has been leveraged for the problem of finding nearest
neighbors in large datasets with high dimensionality. Given a dataset D, all the objects are first
hashed using LSH and then for any given query object its nearest neighbor can be searched
with a query time sub-linear in the dataset size by searching in only the subset of dataset that
hashed to the same bins as the query object [10]. In our approach, we use the LSH to first hash

all the objects of a dataset but instead of finding the nearest neighbor for a object, we find all

15



objects that lie with in the distance threshold d, from that object by considering the subset .S of
objects that has to the same bin during LSH. As opposed to the nearest neighbor search where
each of the objects in this subset S has to be considered again, for the purpose of detecting
outliers, we only need the cardinality of this subset. If the cardinality of this subset is more
than the point threshold p}, then we can say that this object is not an outlier since it has enough
neighbors. This is the central idea of our approach to which we add further enhancements in

order to achieve a very good approximation for finding outliers.

2.2.1 Algorithm Description

The algorithm for outlier detection in centralized setting is executed in two phases. In the
first phase, the LSH scheme is used to hash all the objects to generate the binning structure. In

the second phase, this LSH binning is used to compute the set of approximate outliers.

The algorithm CentralizedOD takes as input the dataset D of size n = | D|, distance thresh-
old d; and point threshold p; and outputs the set of approximate outliers M. In the First phase,
initially the modified point threshold p; and the LSH distance parameter R are computed as:
p, = (1—py) x |D|and R = r; = d;/c. The LSH scheme is then run on the dataset D with the
parameter R. In the LSH scheme each object is hashed using L hash functions each of width
k, as explained in Section 1.2. The output is a binning structure 7" with each bin having the

objects hashed to that bin.

In the second phase Pruning, most of the objects which cannot be outliers are pruned. Ini-
tially all the objects in the dataset are marked as not pruned. For pruning, each object o is
considered and is processed only if it has not been marked as pruned, in which case we find
the number of neighbors o has within distance d;. To find the neighbors, the L bins to which o
is hashed during LSH are considered and the set of all objects stored in those L bins is formed
(without removing duplicates). We denote this set by Neighbors. The objects in this set are
the probable neighbors of 0. More precisely, from Equation 1.4, we know that each object in
the set Neighbors is within the distance 7o = ¢ X r; = d; from o, with a probability at least

(1—pk). To boost this probability, we consider only those objects which are repeated more than
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Table 2.1 Notation
Term Definition

Dataset

Size of dataset

Number of hash functions
Number of bins per hash function
Hash Table

d; Distance Threshold

Dt Actual point threshold

7 Modified point threshold

b, Bin Threshold

Ny Number of Processed Objects
M Set of Outliers

NS g

b; (by < L) times in the L bins and store only those objects in a new set RepeatedNeighbors.
In other words, we are reducing the error probability of considering a non-neighbor as a neigh-
bor of the object o. Here, b; is a bin threshold which can be computed based on the desired
false negative probability. We propose a method to compute the optimal value of b, later in this

section.

If the cardinality of the set Repeated N eighbors is greater than the modified point threshold
P}, with a very high probability o cannot be an outlier since it has sufficient neighbors within
distance d;. Moreover, this holds true for all the objects in RepeatedNeighbors because from
Equation 1.4, any two objects in this set are within distance d;, i.e., every object other than o
also has more than p, neighbors with in the distance d;, so it can not be an outlier (with a very
high probability). Hence, all the objects in RepeatedNeighbors are marked as pruned (non
outlier). Thus we obtain a very efficient pruning mechanism where we can determine many

objects to be non outliers to be non-outliers even without considering them separately.

If, on the other hand the cardinality of RepeatedNeighbors is less than or equal to the point
threshold p}, we consider the object o as a probable outlier and add it to the set of probable
outliers M. This procedure is repeated till all the objects are either marked as pruned or as
outliers. Finally, the set M of the probable outliers is returned. We denote the number of
objects actually processed during Pruning as N, and later in sub-section 2.2.5, we give a

bound for N,,.
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Algorithm 1 CentralizedOD
Require: Dataset D, Distance Threshold d;, Point Threshold p,

Ensure: Set of Outliers M
1 p,=(1—p)x|D|
2 R=d;/c
3 T=LSH(D,R)
4 Compute b; / Compute the optimal bin threshold
5 M = Pruning(D, T, p,,b;)
6 Return M

The set M contains the actual outliers as well as a few false positives and extremely low
false negatives. In the experiments section we show that by choosing the optimal bin threshold
b;, the false negatives can be completely eliminated at the cost of only very few false positives.
In the following sub-section we give a theoretical bound on the number of false positives and
false negatives and in sub-section 2.2.3 we give a method to further reduce the false positives.

If one wishes to completely remove the false positives without any scope for approximation
one could instead use an additional step after the centralized algorithm where each object in
the final set of approximate outliers M is again processed (the process to reduce false positives
given in section 2.2.3 is not required in this case). For each object o, the distance to every
object in the original database D is calculated. If the number of objects in D lying at a distance
greater than the distance threshold d; is greater than the point threshold p; then object o is
marked as an outlier. After processing each object in the M the final output would be the

actual outliers in dataset D. This process is summarized in algorithm 3.

2.2.2 False Positives and False Negatives

In the context of outlier detection, a false positive (fp) is to label a non-outlier as an outlier
and false negative (fn) is to label an outlier to be a non-outlier. In this section we give a bound
on the probabilities of both based on the value of the bin threshold parameter b;. Consider
a LSH scheme where each object is hashed using L hash functions each of width k. The

probability of two objects at a distance greater than 7, = r; X ¢ = d;, to be hashed to the
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Algorithm 2 Pruning

Require: Dataset D, Hash Table 7', Point Threshold p;, Bin Threshold b;,
Ensure: M

1 M={}

2 Yo € D, pruned[o] = false

3 for each objectoin D do

4 if pruned|o] = false then

5 Neighbors =|J~_, T[gi(0)] // g is the hash function
6 RepeatedNeighbors = {0’ | o' € Neighbors and occurrence(o’) > b;}
7 if | Repeated N eighbors| > p, then
8 Vo' € RepeatedN eighbors, pruned[o’] = true
9 else
10 M = M U{o}
11 end if
12 end if
13 end for

Algorithm 3 BruteForceOD

Require: Dataset D, Approximate outlier set M, Distance Threshold d;, Point Threshold p;
Ensure: Outliers M’

1M ={}

2 for each object o in M do

3 count =0
4 for each object o' in D do
5 if Dist(o,0') > d; then
6 count = count + 1
7 end if
8 end for
9 if count > p, then

10 M = M"U{o}

11 end if

12 end for
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same bin is at most p5. Consider the worst case scenario where an actual outlier has exactly
p} neighbors. Hence, counting one non-neighbor as a neighbor will lead to a false negative. In
our scheme, for a non-neighbor to be counted as a neighbor of an object o, it should hash to the
same bin as o for at least b; times out of L times. The probability that this happens for exactly

b, times out of L is given by the binomial probability:

t

Pr'[fn] < <bL ) Pyt (1 — pybeyl—be 2.1

and hence, the probability for a false negative is upper bounded by:

Pr(fn] < (L —b;) x <bL> Pybi(1 — PibeyL=be (2.2)

t

The above formula can be still simplified by using the equality P¥ = 1/n [14], where n = | D),

as:

Prifn] < (L —b) x <L> L= Lyen 2.3)

by nbt n
Similarly, the probability that two objects within a distance R being hashed to two different
bins is at most (1 — p¥). The probability that this will happen at least (L — b;) times out of L
times is given as:

L .
Pr{fp] < by x ( I bt) (1= ")plt (2.4)

This gives an upper bound for the probability of a false positive.

2.2.3 Reducing the False Positives

The technique to reduce the false positives is based on the probabilistic nature of the LSH
scheme. As explained in Section 1.2, the LSH scheme based on p-stable distribution projects
all objects onto random lines. Due to this randomization, each execution of the LSH scheme
projects the objects onto different lines which in turn ensures that the output of the centralized
algorithm is probabilistic. However, choosing an optimal bin threshold ensures that the actual
outliers in the dataset are returned in the output of the centralized algorithm even over multiple

runs. Hence, to further reduce the false positives, we run the centralized algorithm over a
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fixed number of iterations iter, and take the intersection of the resulting sets and return this

intersection set, say S as the final output. i.e., S = ﬂztg M;. Since for a false positive to
occur in the set S it should occur in each of the sets M;, we have the modified false positive

probability and false negative probability as:

Pr'[fp] = (Pr[fp])"*" (2.5)

Pr'ifn] =1—(1— Pr[fn])"* (2.6)

As can be seen from the above formulas, the modified probability of a false positive de-
creases exponentially with the number of iterations and thus we need to run only a few iter-
ations to achieve very few false positives. We discuss more about the effect of iter on the
false positives and false negatives in the experiments section. Furthermore, the false positives
which remain in the final output can be termed as weak non-outliers, in the sense that most
of these objects have marginally greater number of neighbors than the required threshold of
objects to make an object a non-outlier. We support this claim by giving empirical results in

the experiments section.

2.2.4 Bin Threshold

As seen from the equations 2.3 and 2.4, both the false negative and false positive probabil-
ities depend on the bin threshold. Increasing the bin threshold has an effect of decreasing the
false negatives at the cost of an increase in the false positives and vise versa. An optimal value
for b, would be one which would remove the false negatives at the cost of introducing minimal
false positives. In our scheme, the user has the flexibility to fix b;, based on the false negative
probability desired, using equations 2.3. Given a false negative probability, equation 2.3 will
be an unknown in one quantity which is b,. Further, since equation 2.3 is a monotonically
decreasing function with increase in b;, computing the optimal value of b; can be done easily

by using binary search methods.
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2.2.5 Bound on Number of Processed Objects N,

We give an upper bound on the number of objects which are processed during Pruning.
Let the actual number of outliers in the dataset be m. Consider the worst case scenario where
all the actual non-outliers in the dataset have exactly p, number of objects as neighbors. The
number of objects processed, V., would be maximum in the above mentioned case for which

the bound is given as:

N,

pr

:(ererfp)

where n = |D| and fp is the number of false positives. Usually, in a DB(p;, d;) outlier
detection scheme the fraction p; is set to 0.9988, in which case p} will be: p, = (1 — p;)n =
.0012n. Since n >> m and n >> fp we can approximate (n — m — fp) to n and hence, the
bound for number of objects processed is: N, < ((n/.0012n) +m + fp) < m + fp + 834.
This is the worst case bound and usually the actual number of objects processed will be much
less than the above mentioned inequality. Later in the Experiments chapter, we show that for

large datasets, N, is in fact less the 1% of the size of the total dataset.

2.3 Analysis

The Computational complexity of our centralized algorithm is given below:

Computational Complexity: In Algorithm 1, steps 1 and 2 are of constant complexity. The
complexity for computing the LSH (step 3) is O(ndkL) where n and d are the dataset size and
dimensionality and k and L are the width of each has function and the number of hash functions
used in LSH respectively. The complexity for the Pruning sub-protocol is O(nLN,,) where
N, 1s the number of objects processes during Pruning. Considering only dominating terms

and since k << n, the total complexity of the algorithm over a constant number of iterations

is O(ndL).
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2.4 Summary

In this Chapter, we have started out by giving an overview of the previous work in the area
of outlier detection listing the various methodologies proposed in literature for the same. We
then presented our work for approximate outlier detection using the Locality Sensitive Hashing
technique.

We have incorporated the concept of Bin Threshold in the LSH framework which improved
the performance of our algorithm in detecting outliers. Finally, we gave theoretical bounds on

the performance as well as an analysis for computational complexity of the proposed algorithm.
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Chapter 3

Privacy Preserving Outlier Detection

In this Chapter, we extend the Outlier detection algorithm for centralized setting presented in
the previous chapter to a to the case of distributed setting considering privacy. In the following
section, we give a brief overview of related work. Next we an overview of p-stable distribution
based LSH on which our PPOD algorithm is based and then proceed to the description of the

proposed PPOD algorithm.

3.1 Previous Work

Although Privacy Preserving data mining has generated a lot of interest in the research
community as it has gained a lot of importance due to the increasing need for privacy, it is still
relatively a very new research area and thus there is comparatively less work in literature which
propose new PPDM algorithms. Privacy Preserving Outlier Detection has received even less
attention and not more than handful of works consider this problem, which we mention here
along with a few other works in the area of PPDM for other data mining tasks.

Privacy Preserving Data Mining was first introduced by Lindell and Pinkas in [20].In this
paper, an algorithm for privacy preserving / D3 classification was described. privacy preserv-
ing classification has been further studied in [21][37]. PPDM algorithms for association rule
mining were proposed in [16][8][25][32] while clustering was considered in [33][15]. Privacy
preserving outlier detection (PPOD) was introduced by Vaidya et al in [31]. They use the

definition for distance based outliers provided in [18], and give PPOD algorithms for both hor-
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izontal and vertical partitioning of data. Subsequently, a PPOD algorithm using the k-nearest
neighbor based definition [24] was given in [40] , considering only vertical partitioning. Pri-
vacy preserving density based outlier detection algorithms have been proposed in [6, 27] and

an algorithm for spatial outlier detection is discussed in [36].

3.2 p-stable based LSH

Our privacy preserving algorithm uses the LSH scheme based on p-stable distribution pro-
posed by Datar et al in [7] (Note that the centralized algorithm presented in this work is inde-
pendent of underlying hash function used in LSH).

A distribution D over R is called p-stable if there exists p > 0 such that for any real numbers
v1 to v, and independent identically distributed variables X; to X,, with distribution D, the
random variable Y, v; X; has the same distribution as the variable (>_, |v;[?)1/P) X, where X
is a random variable with distribution D. Stable distributions exist for any p € (0, 2]. Special

cases are:

e For p = 2; the Gaussian distribution g(x) = \/%e:pp(—xzﬂ) is 2-stable

e For p = 1; the Cauchy distribution ¢(z) = =17 is 1-stable

In order to build a locality sensitive hash function, the p-stable distribution is used to gener-
ate a random vector a of dimensionality d, where each entry of a is chosen independently from
a p-stable distribution. For a given object v of dimensionality d, the dot product a.v projects the
vector v on to a real line and for any pair of vectors a, b these projections are close if [,(a — b)
is small and far otherwise. Now, dividing the real line into segments of width w gives a hash
function where each segment of the selected width forms a hash bucket. Formally, the hash

function is given by:

av-+b
w

hap(v) = | ]

where b is a random real number uniformly selected from [0, w| (random shift).
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Now for two random vectors v; and vy and a random vector ¢ whose entries are drawn from
a p-stable distribution, a.v; — a.vy is distributed as c.X'; with X being a random variable drawn
from p-stable distribution and ¢ = ||v; — v3]|,. The probability that the two vectors vy, vy

collide under this hash family is gives as:

pl) = Prashoao) = has(un)] = [ )0 Dy

Here f,(t) denotes the probability density function of the absolute value of the p-stable
distribution. As per definition for LSH, the family of hash functions given above is a (71, 7] *

¢, p(1),p(c)) - sensitive.

3.3 Algorithm Description

In the case of vertically distributed data, each player collects information about different
attributes for the same set of objects such that the union of all the attribute subsets equals the
global attributes and all the attribute subsets are disjoint. The algorithm for PPOD over verti-
cally partitioned data is executed in two phases. In the First phase, all players engage in com-
munication to get the LSH binning of all the objects in the dataset considering all the attributes
(distributed across players). In the Second phase, using this global binning information, each
player locally computes the probable outliers.

The algorithm takes as input dataset D of dimensionality d, vertically distributed across ¢
players such that dim(D?P) = dP, |DP| = |D| = n, forp = 1 to t and 22:1 dim(DP) = d. The
algorithm also takes as input the parameters d; and p; and outputs the set of outliers M.

The proposed PPOD algorithm is based on LSH scheme using p-stable distributions[7],

where each each hash function for a d-dimensional object v is computed as:

av+b
w

hap(v) = [ ]

Here, a is a d-dimensional vector, with each entry chosen independently from a p-stable
distribution and b is a real number chosen uniformly from the range [0, w]. In the vertical dis-

tribution, where each player has some d” dimensions of the total d dimensions, each player can
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locally generate the respective d” entries of the vector a and compute its local share (a”.v”) of
the dot product (a.v). The players then compute the secure sum of their shares to get (a.v).
Since the values of b and w can be public (can be generated by one player and then be pub-
lished), all the players can build the LSH binning structure using the dot products previously
computed. Using this binning structure, each player can locally invoke the Pruning protocol to
compute the set of probable outliers. To reduce the overall computation, all this computation
can be done at any one player who then publishes the final outlier set. The procedure is outlined

in Algorithm 4. Now we will explain the important steps of the given algorithm.

Initially, each player p locally generates A} ;, where each element a” is drawn from a p-
stable distribution as explained before. In Steps 6-8 each player will compute their respective
shares of the dot products for all the objects. In step 11, the SecureSum protocol is used to
compute the dot product from all the shares. Steps 14-20 are carried out at any single player,
say p'. In step 14 the values of By, and w are generated, where each element b of By,
is a random number in [0, w]. In steps 17-21, the previously computed dot products are used
to evaluate hash functions for all the objects. The LSH binning is generated using those hash
functions and then the Pruning protocol is invoked to compute the set of probable outliers )M .

Finally, this set M is then published.

We can reduce the false positives by applying the same technique of centralized setting
discussed in Section 2.2.3. That is, we run the entire Algorithm 4, iter times and take the
intersection of the resulting sets of probable outliers M; for 7 = 1 to iter. Since all these runs

are independent, we can execute them in parallel to lower the number of rounds.

3.4 Analysis

The Computational and Communication complexities for Algorithm Algorithm 4 along with

the Security analysis is given below:
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Algorithm 4 Vertical Distribution

Require: ¢ Players, Dataset D vertically distributed among the players, Distance Threshold
dy;, Point Threshold p;

Ensure: Outliers M

1 for each playerp=1tot do
pi=(1—pi) x| D7
R = dt/C
Compute LSH parameters k£ and L
Generate A} ; where Dim(AP) = dP
for each object 0 in D? do

Sixr, = Axp - 0
end for

end for

o © 00 N o o b~ w DD

—_

for each object o in D do

S, = SecureSum(Sh°, §%° .. 5P°)
end for
At P!

Generate By, 7, and w

—_ A
[ 2 I N & N A

for each object 0 in D' do
H.I?JXL = LSOTJFBJ

end for

—_ A
o N O

Compute 7" using Hyx 1,
M = Pruning(DP, T, p,,b;)
Publish M

N —
o ©
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Computational Complexity

We give the computational complexity from the perspective of player P!. In Algorithm 4,
steps 2-4 have constant complexity. Step 5 has a complexity of O(kL). Step 7 has a complexity
of O(nd'kL). Step 14 has a complexity of O(kL). Steps 16 and 18 have a complexity of
O(nkL) and finally step 19 has a complexity of O(nLN,,). Thus the overall complexity for
player P! would be O(nd'L); where d* is the number of dimensions P! has. Consequently

the overall complexity for Algorithm 4 would be O(ndL)

Communication Complexity

In Algorithm 4, communication among the players is necessary only in steps 11 and 20.
Among these, step 11 is the dominating factor in terms of the communication complexity,
where for each object in the dataset, we need to perform %k x L SecureSum operations. Assuming
the cost of each SecureSum operation to be ¢, the overall communication complexity of the

algorithm would be O(nLJ).

Security Analysis

In Algorithm 4, the set of outliers is published by one player in step 20 and this would not
reveal any private information since this is the desired output to be made public. In step 11,
the SecureSum protocol is used to evaluate the dot product of all the shares with the players
and hence no information about the local shares would be revealed. One thing to be noted here
is that the input from each player to the SecureSwum protocol is not the actual data itself but
the projections of the data objects onto random lines and the SecureSum protocol is used to
protect even this information.

Since each player knows the LSH binning considering all dimensions during the algorithm,
some information about the global distribution of the dataset could be inferred. However, no
information about the data projections or actual data with any particular player would be re-
vealed(the limitation being that the number of players need to be greater than 2 due to the

limitation of SecureSum protocol). To elaborate more on this, consider a simplistic example
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Table 3.1 Algorithm Complexity

Setting Round | Communication | Computation
Centralized - - O(ndL)
Vertical 2 O(nLo) O(ndPL)

with three players A, B and C' each having the information about two dimensions (attributes)
of a dataset having n objects. After the SecureSum protocol in step 11 of algorithm 4, each
player gets to know the global LSH binning structure of all objects considering all the dimen-
sions. We give the information gained by one player, say player A, about the local data with
other players. In the global binning structure, if a particular hash bucket has n’ out of the total
n objects hashed to it, then all these objects considering all dimensions lie with in the distance
threshold d; with a very high probability due to LSH properties. From this player A can infer
that these n’ objects lie with the same distance considering only the attributes of either player
B or C. Players B and C' also get to know the same information about other players data from
the global binning structure. But for finding outliers, the distance threshold d; is fixed very
large and is comparable to the spread of the overall dataset and thus the information gained

about the local data with other players is very limited.

3.5 Summary

In this chapter, we have first given a brief overview of previous work in the area of privacy
preserving data mining in general and privacy preserving outlier detection in particular. A brief
description of the p-stable distribution based LSH was given. Next, we presented our algorithm
for privacy preserving outlier detection which used LSH bases on p-stable distributions. Fi-
nally, we gave the computational, communication and security analysis of the proposed PPOD

algorithm.
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Chapter 4

Experiments

Experiments are performed on datasets listed in Table 4.1. Corel contains image features
extracted from a Corel image collection. Landsat database consists of the multi-spectral values
of pixels in 3x3 neighborhoods in a satellite image. Darpa contains evaluation of various
computer network intrusion detection systems. Server is an extract of KDD Cup 1999 Data
containing the statistics of S00K network connections as explained in [29]. Household is a US
census dataset. For implementation of LSH, we have used E2LSH package' as the base, which
is based on the p-stable distribution [7]. For all our experiments the approximation factor € is

set to 2. All experiments are executed on Intel(R) Core 7 CPU 3.33G H z machine.

4.1 Centralized Setting

In this section, we provide empirical evidence on the performance of the proposed outlier

detection algorithm by running it on various datasets listed in Table 4.1. The experimental re-

Thttp://www.mit.edu/~andoni/LSH/

Table 4.1 Dataset Description

Dataset Objects  Attributes Source

Corel 68040 32  kdd repository

Landsat 275465 60 vision lab, ucsb

Server 494021 5 kdd repository

Darpa 458301 23 Lincoln Laboratory, MIT
Household 1000000 3 US Census Bureau
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sults support various claims regarding the performance of the algorithm made in the preceding

chapters.

Execution Time: The execution time (in seconds) averaged over multiple runs of our central-
ized algorithm is tabulated in Column 2 of Table 4.2. Since all the iterations of our algorithm

are independent they can be run in parallel to achieve the speed up.

Bin Threshold: We computed the optimal bin threshold b; as described in Section 2.2.4
for mentioned datasets and ran our algorithm using the same bin threshold. The results are
summarized in Table 4.2. Column 3 specifies the optimal value of b, for each dataset and
column 4 specifies the number of false positives (in %) at the optimal ;. To compute the rate
of false positives and false negatives, we have first found the outliers in each data set using
brute force method for the same distance and point thresholds and then compared the results
with the outliers found using our algorithm. As can be seen from the result, the false positive
rate is quite less proving that the approximation of our algorithm is very good. The detection
rate for each dataset at the optimal b; is 100% (i.e., no false negatives). Furthermore, for each of
these false positives, we calculated the actual number of neighbors with in distance threshold d;
and listed the average number of neighbors (denoted as /N V) for each false positive in column
7. For each dataset, this number NN is only marginally greater than the actual point threshold
p¢ (mentioned in column 6) when compared to the total dataset size. Hence, we can say that
most of these false positives are having very few neighbors (close to p;) and can be considered

to be outliers or weak non-outliers.

The effect of varying bin threshold on false positives and false negatives (detection rate) is
shown in Figure 4.1. Both false positives and detection rate are plotted in logarithmic scale. It
is evident from the figure, as we increase the value of 0;, the number of false negatives decrease
(i.e., detection rate increases) at the cost of increase in the number of false positives. As seen
from the in Figure 4.1 and Table 4.2, at the optimal value of b, false negatives are eliminated at

the cost of a minimal false positives for all datasets.
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Table 4.2 Performance of Centralized algorithm

Dataset Time (s) | b, | F'P (%) | Ny (%) pe | NN
Corel 30.77 | 45 0.01 0.62 82 | 147
Landsat 4411 | 30 0.02 0.36 | 331 | 929
Server 37.67 | 50 0.01 0.07 | 593 | 1000
Darpa 50.00 | 30 0.03 0.68 | 550 | 1103
Household 61.63 | 25 0.01 0.14 | 1200 | 1326
1200 =
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1000 \ —&— Server
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§ 800 \\ i— Household
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Figure 4.2 Effect of Iterations
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indeed less than 1% of the dataset size as claimed in Section 2.2.5.

Number of processed objects: For each dataset, the number of objects processed (V)
during Pruning protocol in Algorithm 1 are listed in column 5 (in %). The values in this

columns shows the efficiency of our pruning technique and the number of objects processed is

Iterations: The effect of varying the number of iterations iter on the false positives at the
optimal bin threshold is shown in Figure 4.2 As can be seen from the figure, the number of
false positives decreases exponentially with increase in iter. Thus the number of iterations

needed to be run to achieve a very good approximation would be very less.




4.2 Distributed Setting

We discuss about the performance of the proposed privacy preserving algorithms for vertical
distribution of data.

The performance of Algorithm 4 in terms of false positive and false negative rates remain the
same as that of the centralized algorithm. We ran Algorithm 4 considering two players with
uniform distribution of dimensions and compared the communication cost with the privacy
preserving algorithm for vertical distribution given in [31]. Up to datasets having size of order
109, the difference in the cost is of the order 102, but this difference would be more considerable

for larger datasets.
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Chapter 5

Extension to Horizontal Partitioning

The outlier detection algorithm for centralized setting proposed in this work can also be ex-
tened to a Horizontal partitioning of data considering privacy, which is presented in this chap-
ter. This work is in collobaration with N.Raval and is a part of his masters dissertation[22];it is

presented here for the sake of completeness and is not a contribution of this thesis.

5.1 Algorithm Description

In the case of Horizontal partitioning, each player has the same attributes for a subset of
the total objects. The algorithm for privacy preserving outlier detection over horizontally dis-
tributed data is executed in two phases. In the First phase, each player locally computes its
own set of local probable outliers, by running CentralizedOD on its own dataset. These local
outliers contain the global outliers as well as a few non-outliers for which enough neighbors
do not exist in the respective local datasets. To prune these non-outliers, the players engage in
communication in the Second phase and compute their subsets of the global probable outliers.

We define the local and global outliers as follows.

Definition 5 local outlier: given a distance threshold d, and a point threshold p;, an object
o with player P; is a local outlier if the number of objects in the local dataset D; lying at a

distance greater than D is at least a fraction p; of the total dataset N.
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Definition 6 global outlier: given a distance threshold d; and a point threshold p;, an object
o in a dataset D is a global outlier if at least fraction p, of the objects in D lie at a distance

greater than D from o.

We consider ¢ players, each with dataset D? for p = 1 to ¢t and n? = |DP| such that the
size of the entire dataset D is n = Z;Zl nP. We assume that n is known beforehand to all
the players, otherwise it could be computed using Secure Sum protocol. Apart from this, the
algorithm takes as input distance and point thresholds. At the end of the algorithm each player
has its subset of the outliers in the dataset D.

As in the case of vertical distribution, the PPOD algorithm for Horizontal distribution of

data is also based on LSH scheme using p-stable distributions[7], where each hash function for

a d-dimensional object v is computed as:

av+b
w

hap(v) = |

J

While performing the LSH on the local datasets, in each iteration of the LSH, all the players
need to use the same ranodmness. Hence, any one player say P! computes the LSH parameters
k and L and generates the random vectors Ay, and By . Here, each element a of Ay, is a
d-dimensional vector whose each entry is independently drawn from a p-stable distribution and
each element b of By, is a random number in [0, w]. P! then publishes these values to all the
other players. Each player then computes the modified point threshold p, = (1 — p;) x n and
the LSH distance parameter 1. Note that the parameter p; is computed based on the size of the
entire dataset instead of the size of the local dataset. The LSH scheme is then run on the local
dataset using the above computed parameters which outputs the binning structure 77. Here,
the LSH scheme is a bit different from that of the LSH scheme run in the centralized setting in
that the random vectors A and B are given as input to the LSH scheme whereas in the actual
LSH scheme these values are generated with in the LSH protocol. The protocol Pruning is
then invoked, which returns the set of local probable outliers M.

In the Second phase, to form the set of global outliers, each party requires the total number
of objects with all the other players that are hashed to each bin. Each player has a set of bins

generated during LSH where the bin labels with each player might be different (considering
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Algorithm 5 Horizontal Distribution

Require: ¢ Players, Datasets DP for p = 1 to ¢, Total Dataset size n, Distance Threshold d;,
Point Threshold p,

Ensure: Outliers MP;p=1tot
1 At P
Compute LS H parameters k, L and w
Generate A1, and By,
Publish &, L, w, Arxr, and Bj«r,
for each player p = 1 to ¢ do

2
3
4
5
6 p,=(1—p) xn
7 R=d;/c
8 TP = LSH(D?, R, Arxr, Brxr)
9 Compute b;
10 M’ = Pruning(DP, TP, p;, b;)
11 end for
12 for each player p = 1to ¢ do
13 BinLabels? = {label of each bin in 77}
14 end for
15 BinLabels = SecureUnion(BinLabelsP);p=1tot
16 for each playerp = 1tot do

17 for i = 1 to | BinLabels| do

18 if BinLabels(i) € BinLabels? then
19 Cr(i) = [T7(0)]

20 else

21 CP(i) =0

22 end if

23 end for

24 end for

25 C = SecureSum(C*,C?...,C")

26 for each player p = 1to ¢t do

27 CP=C—-CP

28 for each object 0 in M'? do

29 Neighbors? = |J=_, T”[gi(0)]
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30 RepeatedNeighbors? = {q € Neighbors? | occurrence(q) > b;}

31 req-nn? = p, — |Repeated N eighbors?|

32 ValidBins? = {b; | C?[g;(0)] > reqnn?,i=1,2,..L'}
33 if [ValidBins?| < b, then

34 M?P = M? U {o}

35 end if

36 end for

37 Return MP
38 end for

only the non-empty bins). Hence the players communicate to form the union of all the bin
labels using the SecureUnion protocol [5]. While forming the set of binlabels, each binlabel
needs to be indexed with the number of iteration during LSH (1 to L) in order to differentiate
between bins of same labels created during different iterations of LSH. Each player then counts
the number of objects it has in each of these bins. The SecureSum protocol [5] is used to
compute the sum of the corresponding counts with all the players for each bin label. Each
player then locally computes the sum of the other £ — 1 player’s counts for all the bins. At every
player, each object o in the set of local probable outliers M’ is then considered to determine
whether it is a global outlier. To get the number of neighbors o has in the local dataset, the
cardinality of the set Repeated N eighbors for o is computed. This step is actually redundant if
the value is stored in the First phase (during Pruning). This value would be less than p;} since
the object was considered a local probable outlier in the First phase. The number of neighbors
required to make it a non-outlier is computed as: req,, = p; — | Repeated N eighbors|. To get
the count of neighbors of o which are available with other players, L entries in C? indicated by
gi(0) where i = 1 to L, are considered. Out of these L bins, only those bins which have object
count greater than req,,, are said to be ValidBins?. If the cardinality of ValidBinsP is less
than or equal to b;, then the object o is considered as a global outlier and added to the set of
global probable outliers MP.

As in the centralized setting, the whole algorithm is run over multiple iterations and the

intersection of all the global probable outlier sets is returned as the final set of outliers at
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each player. Since the procedure to find the global outliers is a bit different from that of the
original centralized scheme, the false positive rate increases slightly in comparison to that of
the centralized algorithm. Experiments show that, at the optimal value of b;, the increase in

rate of false positives is only about 0.02% [22] where as the false negatives still remain zero.

5.2 Analysis

Computational Complexity: We give the computational complexity from the perspective
of player P'. The computational complexity of step 3 is O(kL). Steps 8 and 10 have com-
putational complexities of O(n'dkL) and O(n' Ny, L) respectively. Step 13 has a constant
complexity. The computational complexity of steps 17-23 depends on the average number of
non-empty bins N, created during each iteration of LSH. In the worst case where each object
in the dataset is hashed to a different bin, the number of bins would be equal to the dataset
size. However, the number of bins would be much less than the total data size in the average
case. Thus the average case complexity for steps 17-23 is O(V,L); where N, << n. The
computational complexity for steps 28-36 is O(m''L); where m’ = |M"|. Considering the
dominating terms, the overall computational complexity for player P! is O(n'dL).

Communication Complexity: In Algorithm 5, communication among the players happens in
steps 4, 15 and 25. Step 4 has a communication complexity of O(kL). The average case com-
munication complexity for step 15 is O(V,L); where IV, << n. The corresponding average
case communication complexity for step 25 is O(NylognL). Thus the overall communication
complexity for Algorithm 5 is O(NylognL).

Security Analysis: In Algorithm 5, the values communicated in step 4 are public values and
do not reveal any private information. After executing steps 15 and 25, each player has number
of objects in the entire database that are hashed to each bin. From this, each player can infer
about the distribution of the objects of all the other players but cannot infer about the distri-
bution of any single player (since SecureUnion and SecureSum are used). However, in most
cases where the objects with each player come from the same distribution, this information is

usually known before hand and thus there is no extra information revealed.
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Chapter 6

Conclusions

In this thesis, we have considered the problem of privacy preserving outlier detection for
the case of vertically partitioned data and have come up with an algorithm which avoided the
quadratic communication and computational complexities of the previously known algorithms.
First, we have presented an approximation algorithm for the case of centralized data where in
all the data is available with a single party. This algorithm uses the technique of Locality
sensitive hashing through which a very effective pruning process was developed. The idea of
Bin Threshold was developed in order to improve the level of approximation of the algorithm.
We have provided theoretical bounds for the level of approximation of the proposed outlier
detection algorithm along with empirical evidence for the same. The computational complexity
of this algorithm is O(ndL) where n and d are the size and dimensionality of the dataset and

L is the LSH parameter.

Next, we have extend this algorithm to the case of vertical distribution of data considering
privacy and gave an algorithm with a computational complexity same as that of the centralized
setting which is a significant improvement from the known O(n?d) complexity. The communi-
cation complexity of the algorithm is O(n L) which is again an improvement from the quadratic

complexity in dataset size.
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6.1 Future Work

An extension of the proposed centralized algorithm to the case of Horizontal distribution
of data was already discussed although not a contribution of this thesis. One line of further
improvement could be to try and extend it to the case of hybrid partitioning of data where each
player can have a subset of the total objects or a subset of the dimensions of the dataset.

One other line of work could be to try and utilize the proposed LSH framework for other
outlier detection methods such as density based outlier detection etc. Also, the advantage of
classifying the objects of a dataset using LSH technique could be considered for other data
mining tasks such as clustering and explore the possibility of developing efficient privacy pre-

serving algorithms for those tasks.
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