
A Shallow Parser for Malayalam

Thesis submitted in partial fulfillment
of the requirements for the degree of

MPhil
in

Computational Linguistics

by

Devadath V V
201224608

devadathv.v@research.iiit.ac.in

International Institute of Information Technology
Hyderabad - 500 032, INDIA

July 2016

Copyright © Devadath V V, 2016

All Rights Reserved

International Institute of Information Technology
Hyderabad, India

CERTIFICATE

It is certified that the work contained in this thesis, titled “A Shallow Parser for Malayalam” by
Devadath V V, has been carried out under my supervision and is not submitted elsewhere for a degree.

Date Adviser: Prof. Dipti Mishra Sarma

To my parents

Acknowledgments

The first and foremost I would like to thank my advisor Prof. Dipti Misra Sharma who provided
me her generous support and inspiration all through this work. It is her guidance and constructive
suggestions which have moulded my work in the present shape. I express my gratitude to her.

Next, I would like to thank Sanal Vikram(HCU), for giving more informations about NLP and IIIT-
Hyderababd, apart from the support and help for work in Malayalam given during my stay at IIIT-
Hyderabad.

I would like to express heart felt gratitude to my first mentors, Sambhav Jain and Himanshu Sharma
for teaching me Shell Scripting and Python patiently. Without them I would not have written a single
line of code.

I would like to thank Naveen Sankaran for being the big brother who helped me in solving technical
problems in no time.

Research is a joint effort. I would like to thank all my friends and lab mates especially Litton J
Kurisinkel, Pruthwik Mishra and Vigneshwaran Muralidaran, without their help and support my thesis
would not have been completed successfully.

Next I would like to thank Srinivas sir, Ram Babu sir, and Namrata Madam, Laxminarayan Sir for
providing the supportive research environment in the lab.

I do not have any words to describe Praveen Krishnan who gave me all the support during my stay
at IIIT-H. Thanks for being there as a big brother.

Finally I would like to thank my whole family for the full support given by them for my research.

v

Abstract

Malayalam is an agglutinative and morphologically rich language as any other Dravidian language.
Computational processing of Dravidian languages is not trivial because two or more words can join to
form a string of words with a morpho-phonemic change at the point of joining. This process known
as “Sandhi”, in turn complicates the individual word identification. The current work is an attempt to
break the barrier of word segmentation and to create a shallow parser for Malayalam, which facilitates
non-recursive phrase identification given an input.

In this work, Shallow Parser has mainly 3 modules namely Sandhi Splitter, POS Tagger and Chun-
ker. Since words are the basic components in the sentence, not identifying the individual words in a
sentence will affect the output of a shallow parser. Hence in order to tackle the problem of “Sandhi”,
after attempting a few rule-based approaches, we arrived at a hybrid “Sandhi Splitter” which gave an
overall accuracy of 87% . This system uses Naive Bayes classifier to identify the split point and hand
crafted character-level rules to induce morpho-phonemic changes. A CRF based Parts-Of-Speech tagger
has been employed for the identification of grammatical category of words. Various experiments with
different templates of features showed that Malayalam has more dependence over word-internal features
like prefix and suffix information than word-external features like the position of a word in a sentence.
The highest overall accuracy we obtained is 91.25%. The final module “chunker” has been employed
to find out the non-recursive phrases based on the Parts-Of-Speech tags of the words. This CRF based
chunker gave an overall accuracy of 94.33%.

Error propagation is a problem in shallow parsing. Errors created by each module affect the subse-
quent modules. When each module is put in a pipeline in such a way that the output of the previous
module will be the input of the next module, overall accuracy of shallow parser came down to 71% from
92%. This shows the need and importance of a highly accurate sandhi splitter which is the main source
of error. It is important to note that the experiments clearly show that morphology is the key factor for
processing Malayalam.

vi

Contents

Chapter Page

1 Introduction . 1
1.1 Motivation . 1
1.2 Syntactic parsing . 1
1.3 Shallow parsing . 2
1.4 Shallow parser for Malayalam . 2
1.5 Summary of contributions . 3
1.6 Chapterization . 4

2 Malayalam . 5
2.1 Malayalam . 5
2.2 Characteristics of the language . 5
2.3 Grammatical categories . 5

2.3.1 Nouns . 6
2.3.1.1 Derivative Nouns . 6

2.3.2 Pronouns . 7
2.3.3 Postpositions . 8
2.3.4 Verbs . 9

2.3.4.1 Non-Finite Verbs . 10
2.3.4.1.1 Relative Participles . 10
2.3.4.1.2 Adverbial Participles . 11

2.3.4.2 Pronominalised Verbs . 12
2.3.5 Adjectives . 13
2.3.6 Adverbs . 13
2.3.7 Conjunctions . 13

2.3.7.1 Coordinate Conjunctions . 14
2.3.7.2 Subordinate Conjunctions . 14

2.3.8 Interjections . 15

3 Sandhi Splitter . 16
3.1 Introduction . 16
3.2 Sandhi . 16
3.3 Sandhi in Malayalam . 17

3.3.1 Internal Sandhi . 17
3.3.2 External sandhi . 18

3.4 Sandhi Splitting . 18

vii

viii CONTENTS

3.4.1 Importance of Sandhi Splitting . 18
3.4.2 Sandhi Splitting vs Word Segmentation . 19

3.5 Related works . 19
3.6 Various Approaches . 19

3.6.1 Rule based Methods . 19
3.6.1.1 Look up Dictionary Based . 20
3.6.1.2 Root and Suffix Based . 20
3.6.1.3 Problems with Rule based method 20

3.6.2 Hybrid Method . 20
3.6.2.1 Sandhi Rules . 20
3.6.2.2 Split point identification . 22
3.6.2.3 Data and Results . 24

3.6.2.3.1 Data Set . 24
3.6.2.3.2 Results . 24

3.6.2.4 Error Analysis . 25
3.6.3 Sandhi Splitter using CRF . 25
3.6.4 Various methods of evaluation . 26

3.6.4.1 Method 1 . 26
3.6.4.2 Method 2 . 26
3.6.4.3 Method 3 . 27

3.6.5 Conclusion . 27

4 Part Of Speech Tagger . 28
4.1 Part of Speech . 28
4.2 Part of Speech Tagging . 28

4.2.1 Rule based . 29
4.2.2 Statistical . 29
4.2.3 POS Taggers for Indian Languages . 29

4.3 Corpus creation . 30
4.3.1 Tagging Scheme . 30

4.3.1.1 Differences in tagging . 31
4.4 Parts-OF-Speech Tagger using Naive Bayes . 31
4.5 Conditional Random Fields . 32
4.6 Experiments . 32

4.6.1 Experiment Type - 1 . 32
4.6.1.1 Result . 32
4.6.1.2 Error Analysis . 33

4.6.2 Experiment Type - 2 . 34
4.6.2.1 Results . 34
4.6.2.2 Error Analysis . 35

4.6.3 Experiment Type - 3 . 36
4.6.3.1 Results . 36
4.6.3.2 Error Analysis . 37

4.7 Overall Results . 37
4.8 Conclusion . 38

CONTENTS ix

5 Chunker . 39
5.1 Chunking . 39
5.2 Chunks . 39
5.3 Previous works . 40
5.4 Chunkers for Indian Languages . 41
5.5 Chunking in Malayalam . 41
5.6 Data . 42
5.7 Current Approach . 42
5.8 Experiments . 42
5.9 Results & Error Analysis . 42
5.10 Conclusion . 43

6 Shallow Parser . 45
6.1 Shallow Parsing . 45
6.2 Architecture of the Shallow Parser . 45
6.3 Data for Experiments . 47
6.4 Experiments . 47

6.4.1 Experiment Type - 1 . 47
6.4.1.1 Results . 47

6.4.2 Experiment Type - 2 . 48
6.4.2.1 Method of Evaluation of Pipeline 48
6.4.2.2 Results . 49

6.5 Error Analysis . 49
6.6 Summary . 50

7 Conclusions . 51
7.1 Future Work . 52

Bibliography . 58

List of Figures

Figure Page

1.1 Pipeline Architecture . 3

3.1 Split point . 22
3.2 Word trie . 23

4.1 Results - Exp.No 1 . 33
4.2 Results - Exp.No 2 . 35
4.3 Results - Exp.No 7 . 37

6.1 Pipeline Architecture . 46

x

List of Tables

Table Page

2.1 Gender Inflection . 6
2.2 Case-Inflections for Noun . 6
2.3 Case inflections for P=1st and 2nd person Pronouns 7
2.4 Postpositions . 8
2.5 Iflections for Tense & Aspect for the verb “to go” . 10
2.6 Non-finite/ Infinite verb forms . 12
2.7 Various types of adverbs from distal & proximal markers 13

3.1 Sandhi rules . 21
3.2 Results . 24
3.3 Rule accuracy when k=6 and S= 1 . 25
3.4 Data and Results of CRF Sandhi splitter . 26
3.5 Results of various sandhi splitter evaluation methods 27

4.1 Results of POS Tagger using Naive Bayes . 31
4.2 Results of Experiment Type -1 . 33
4.3 Results of Experiment type 2 . 35
4.4 Results of Experiment Type - 3 . 37
4.5 Results . 38

5.1 Accuracy of chunker with various feature templates 43
5.2 Tag-wise scores for chunker . 43

6.1 Result of Sandhi Splitter . 47
6.2 Result of POS tagger . 48
6.3 Result of Chunker . 48
6.4 Pipeline Accuracies . 49

xi

Chapter 1

Introduction

1.1 Motivation

In this digital era, huge amount of textual data is being produced in various Indian languages in the
form of online newspapers, social media posts, blogs etc. This has increased the necessity as well as
the opportunity to break the language barrier by creating automatic language processing systems like
Machine translation and Question Answering systems. This is being done with the help of Machine
Learning and NLP algorithms which need huge amount of data. However different languages possess
different complexities in terms of processing them computationally.

Words are the main components of a piece of text. All text processing tasks require individual words
in the text to be identified. Sanskrit and Dravidian languages are highly agglutinative in nature. In these
languages two or more words can join to form a string of words with euphonic change at the point of
joining. which in turn complicates the individual word identification.

Malayalam is an agglutinative and morphologically rich Dravidian language. This work is to create a
shallow parser for Malayalam, which facilitates non-recursive phrase identification given a raw sentence.

1.2 Syntactic parsing

Syntactic parsing is an important task in Natural Language Processing. It acts as an intermediate
stage which gives the structure of sentences that can be used to process semantic, discourse and prag-
matic information. Parsing a sentence is a complex task since it needs informations from various levels
of analysis like, morphology, POS tags, chunks, semantics etc.. There are two challenges involved in
full syntactic parsing.

1. In full parsing, a grammar and search strategy are applied to assign a complete syntactic structure
to sentences. The main problem here is to select the most plausible syntactic analysis given
the often thousands of possible analyses a typical parser with a grammar may return [22]. This
increases the search space and increases the processing complexity.

1

2. Dependence over various modules causes increase in error propagation which eventually affects
the final output.

On the other hand many NLP applications do not need that much information given by a full parser.
As a response to these problems in full parsing, Abney introduced the concept of parsing by chunks [1]
which gives a shallow syntactic analysis of a sentence that is relatively unambiguous.

1.3 Shallow parsing

Shallow parsing is a task of automatic identification of non-recursive phrases. Shallow parsing is a
comparatively less complex process which uses only simpler search space. For recovering the shallow
syntactic structure, Abney introduced the concept of parsing by chunks. According to him, a chunk
consists of a single content word surrounded by a constellation of function words. To be precise, chunks
are non-recursive phrases which contain only the head or content word and its modifiers.

Sentence→He sat on his suitcase.
Chunks→ [He]NP [sat]VP [on]PP [his suitcase]NP.

In computational terms, for Abney, chunks are connected sub graphs of a sentences parse tree. They
are defined in terms of a content word and their own syntactic structure that can be represented in the
form of a tree. However a chunk does not include all the descendants of the root node that may be
present in the parse-tree of the complete sentence.

Shallow Parser is not a single module, but a collection of modules which helps in extracting the
shallow syntactic information from the input sentence. It has been experimentally proved that shallow
parsers are useful in both text and speech processing domains. Verbmobil is a large project on devel-
oping speech to speech translation system. Shallow parsers have been used to add the robustness to the
system for parsing the ill-formed spontaneous speech [58]. It is proven that the use of Shallow parsers
can reduce the search space in full parsing, by identifying the head word and its modifiers [9]. Ques-
tion answering system on World Wide Web is another place where the shallow parser has been used to
process ill-formed data in large quantities [8]. This system uses a tool “SHAPQA”- Shallow parser for
Question answering to retrieve the urls with the searched phrase keys.

1.4 Shallow parser for Malayalam

Making a Shallow parser for Malayalam is a challenging task because of its high agglutinative nature.
One or more words can join to form a string of words with euphonic change at the point of joining. This
process is known as Sandhi. This makes the individual word identification difficult and hence a Part-
Of-Speech tagger and also a Chunker. The current work makes an attempt to build a shallow parser

2

for Malayalam which includes Sandhi Splitter, POS Tagger and a Chunker. Sandhi Splitter identifies
and separates the individual words present in a string. building a POS tagger identifies the grammatical
category of words and a chunker identifies the non-recursive phrases. Architecture of the Shallow parser
pipeline for Malayalam in the current study has been given in Figure 1.1.

Figure 1.1: Pipeline Architecture

1.5 Summary of contributions

Highly Agglutinative nature of Malayalam makes the task tough to start with POS Tagging or Morph
analysis since the words are joined to form a long string. This motivated to build a Sandhi-splitter which
eventually helped in developing a Shallow Parser.

• A Hybrid Sandhi Splitter with 87% accuracy has been built using Naive Bayes and character level
rules. This system precisely identifies the split points from a given string and applies character
level rules to split and retrieve the actual surface form of a word. Statistical part is trained using a
self annotated corpus of 2000 words with Sandhi.

• A statistical Part-Of-Speech Tagger has been built using Conditional Random Fields which gives
an accuracy of 91%. From the experiments it is understood that the word-internal features along
with word-level contexts give better accuracy than using either of them alone.

3

• A statistical Chunker also has been built using Conditional Random Fields which yields an accu-
racy of 94%. Experiment shows that the Chunker gives a better accuracy when it uses words and
their POS Tags of a window of 2.

• An end to end Shallow parser with CRF has been built which shows the importance and need of
a Sandhi Splitter with a high accuracy.

• Created a 70k POS and Chunk annotated corpus which is tokenised and Sandhi split.

• Created Sandhi annotated 2k data which can be used for creating and modifying Sandhi Splitter.

1.6 Chapterization

• Chapter-2 Malayalam Gives a detailed description about the grammatical structure of the lan-
guage Malayalam with examples.

• Chapter-3 Sandhi Splitter Describes about the theoretical aspects of Sandhi followed by the
explanation about the necessity and importance of Sandhi splitter . Then it describes the various
methods of Sandhi splitting.

• Chapter-4 Part-Of-Speech Tagger Gives an account for the changes in definition of various
tags. In continuation, the chapter explains the various experiments conducted with CRF followed
by a detailed error analysis.

• Chapter-5 Chunker Details about the concept of chunk and chunking along with the previous
works in general and particularly in Indian languages. This also gives a detailed account of
experiments conducted using CRF along with a detailed error analysis.

• Chapter-6 Shallow Parser This chapter discusses about the pipeline of Malayalam Shallow
Parser where the output of the previous module will be the input for next module. Experiments
and results have been explained for both individual modules as well as pipeline.

4

Chapter 2

Malayalam

2.1 Malayalam

Malayalam is the official language of Kerala and Lakshadweep islands. It is one of the 22 official
languages of India, spoken by around 35 million people[30]. This language belongs to the family
of Dravidian languages and is believed to be originated from old Tamil having a strong influence of
Sanskrit in its vocabulary at its later time of development[57]. Recently, Malayalam got the status of a
classical language[60]. The language has a script of its own and now there are 51 letters including 20
long and short vowels and the consonants.

2.2 Characteristics of the language

Malayalam is an inflectionally rich and agglutinative language like any other Dravidian language
such as Tamil, Telugu or Kannada. Even though all Dravidian languages share similar structural prop-
erties, there are two major characteristics which make Malayalam unique among Dravidian languages.

• Malayalam does not have predicate agreement between subject/object and verb for gender, num-
ber and person.

• Prevalent usage of copulas in utterances.

2.3 Grammatical categories

Traditional as well as modern grammars in Malayalam discuss about the grammatical categories of
words. Kerala Panineeyam [57] by A R Raja Raja Varma which is the most widely accepted traditional
grammar for Malayalam talks about nouns, pronouns, verbs, adjectives, adverbs, indeclinables, and
conjunctions. In modern grammar Malayalam[32] by Asher and Kumari and A Grammar for Malay-
alam[37] by Ravi Sankar S Nair also describes all the general 8 categories of word, nouns, pronouns,

5

verbs, adjectives, adverbs, postpositions, conjunctions, and interjections. In this work, grammatical
categories are explained based on the modern grammars.

2.3.1 Nouns

Nouns in Malayalam inflect for Gender, Number and case. Gender inflection is only for human
beings and for non-human beings a common gender is assigned . “anZ”1, “i”, “aM” are the masculine,
feminine and neuter gender suffix markers respectively[57]. However from Pronouns “anZ”, “alZ”,
“wu” are the respective masculine, feminine and neuter gender suffix markers. Animate human nouns
take the suffix “maar” when they have gender suffixes and animate non-human nouns take the suffix
“kal” [37]. Cases are and case suffixes are given in Table 2.2.

Gender suffixes Examples
Gender Suffix Example1 Example2

Masculine anZ mitukkanZ kalYlYanZ
Feminine i mitukki kalYlYi

Neuter aM veVlYlYaM kalYlYaM

Table 2.1: Gender Inflection

Case suffixes Examples
Case Suffix Tree Elephant Ram Kid

Nominatiive NULL maraM Ana rAmanZ kutti
Accusative eV marawweV AnayeV rAmaneV kuttiyeV
Socialtive ot marawwot Anayot rAmanot kuttiyot

Instrumental AlZ marawwAlZ AnayAlZ rAmanAlZ kuttiyAlZ
Dative in/kk marawwin Anakk rAman kuttikk

Genetive inrYeV/uteV marawwinrYeV AnayuteV rAmanrYeV kuttiyuteV
Locative ilZ marawwilZ AnayilZ rAmanilZ kuttiyilZ

Table 2.2: Case-Inflections for Noun

2.3.1.1 Derivative Nouns

Derivative Nouns are the Nouns derived from Verbs. These Nouns can inflect for cases and they
cannot take any argument as a verb[57]. “iruwwaM”, “kalYikkalZ”, “paTipp”, “ottaM”.

1Throughout this work, Malayalam characters are written using WX Transliteration scheme. Please see Appendix for the
details.

6

(1) FAnZ
I

paTipp
study

wutarZnnu.
continue.PRST

‘I continued the act of studying’

(2) eVnikk
I.DAT

natawwaM
walking

iRtaM
like

AN.
is.COP

‘I like the act of walking’

2.3.2 Pronouns

Pronouns in Malayalam are similar to nouns in inflection and they inflect for Gender, Number, Per-
son and Case. 1st Person singular Pronoun is ”njAnZ”. In nominative case, it uses this form and when
it comes to all other cases, oblique forms are used[37]. The first person plural shows a distinction be-
tween inclusive and exclusive, where the inclusive being ”nammalYZ”(speaker and addressee included)
and exclusive being “FaffalYZ”(only speakers included)b[57]. 2nd Person singular pronoun is “nI” and
plural form is “niffalYZ”. The reflexive form ”wAnZ” is also commonly used as second person singular
form to address people with equal or lower status. 3rd Person Pronouns are Distal and Proximal pro-

1st person 2nd person
Case Singlular Plural-Exclusive Plural-Inclusive Singular Plural

Nominative FAnZ FaffalYZ nammalYZ nI niffalYZ
Accusative eVnneV FaffalYeV nammalYeV ninneV niffalYeV
Sociative eVnnot FaffalYot nammalYot ninnot niffalYot

Instrumental eVnnAl FaffalYAlZ nammalYAlZ ninnAlZ niffalYAlZ
Dative eVnikk FaffalYkk nammalYkk ninakk niffalYkk

Genetive eVnrYeV FaffalYuteV nammalYuteV ninrYeV niffalYuteV
Locative eVnnilZ FaffalYilZ nammalYilZ ninnilZ niffalYilZ

Table 2.3: Case inflections for P=1st and 2nd person Pronouns

nouns. They inflect for Gender, Number and cases as Nouns do. “a” is the distal marker and “i” is the
proximity marker. From these morphemes, gender and number suffixes can be added to form words like

• “aw” = That thing.

• “iw” = This thing.

• “avanZ” = That male.

• “ivanZ” = This male.

• “avalYZ” = That female.

• “ivalYZ” = This female.

7

• “avarYZ” = That group of people.

• “ivarYZ” = This group of people.

“e” is the indefinite marker which is being used to create interrogative pronouns in Malayalam. Similar
to distal and proximal markers, gender and number suffixes can be added.

• “ew” = which thing.

• “eVvanZ” = which male.

• “eVvalYZ” = which female.

• “eVvarYZ” = which group of people.

2.3.3 Postpositions

Postpositions in Malayalam are verbal participles that have lost the link to the verb from which they
are derived [37]. Such forms are considered as grammaticalised and they cannot be considered as verbs
any more. They serve to extend or modify the meaning of the case suffix or semantically link the noun
to verbs.

(3) njANZ
I

vatikoVNt
stick+instr

aticcu.
beat.PAST

‘I beat with/by stick.’

(4) eVnikk
I.DAT

awineV
that.ACC

kurYicc
about

arYiyAM.
know

‘I know about that’

Postposition Example Meaning
koVNt kall koVNt by stone

Ayi avan Ayi for him
ninn aviteV ninn From there

oVppaM enteV oVppaM with me
pOleV aw pOleV like that
veNti avalyZkk veNti for her
kuricc enneV kuricc about me

prakAram aw prakAram according to that

Table 2.4: Postpositions

8

2.3.4 Verbs

Morphology of verbs in Malayalam is complex because of the rich agglutination. One of the most
interesting properties of Malayalam shared by other Dravidian languages and south Asian languages in
general is the problem posed by the conventional notion of finiteness[31]. Finiteness is usually related
to some of the central properties of a clause such as tense, aspect, agreement and more generally on
how a clause is anchored to the utterance context [3]. With the arrival of GB2, finiteness was analyzed
as a structural property of a clause rather than an inflectional property of a verb. Subsequently every
clause was subject to a binary classification of whether it is finite or non-finite with various properties
on verb such as tense, agreement signalling finiteness[31]. Therefore finiteness within the standard GB
and minimalist framework is a morphosyntactic category that relates to

1. Regulation of tense and agreement.

2. The Control of realization of subject argument.

3. Restriction of some domains from application of certain syntactic rules.

This has been discussed in [39]. But these criteria of finiteness fail when we analyse the data in Malay-
alam. For one, Malayalam does not exhibit agreement as a feature on its finite verbs and interestingly
just like every other Dravidian language, contains only one finite verb in a typical complex sentence
with every other verbs being non-finite. Secondly, the multiple non-finite verbs show tense markers.
Hence considering tense and agreement as criteria for deciding finiteness of a verb is not suitable for
Malayalam. Other Dravidian languages show agreement as a feature in finite verbs but Malayalam lacks
that as well and hence it is not possible to characterize finiteness in terms of agreement.

Generally “unnu”, is the present tense marker, “i/u” are the past tense markers and “uM” is the future
tense marker. “pOkunnu(go)” is considered as a finite verb since it can stand alone as a main verb in a
sentence. If we analyse the morphology, “pO” is the verb root with the meaning “to go and “unnu” is
the present tense marker. But if we look at the adjectival participial form of the verb root “pO”, that is
“pOkunna” which means “that which goes”. This word modifies a noun, has the present tense marker
“unnu” and cannot stand alone as a main verb. Similarly Past tense of “pO” is “pOyi”, where “i” is past
tense marker. But adjectival participle form is also available in past tense, “pOya”. Moreover such forms
can have inflections for Aspects also like, “pOyirunna, pOyikkoVNtirikkunna, pOyirunna..etc. Hence
absence and presence of tense markers cannot be taken as the criteria for finiteness and non-finiteness
in Malayalam.

But Traditional Grammars[57] discuss about only two types of verb forms, i.e. Dependent verbs
and Independent verbs. Independent verbs have a sense of completeness in the sense that they do not
depend on any other verbs in the utterance context. But dependent verbs cannot stand alone and they
usually invoke a sense of incompleteness in the utterance context. Again dependent verbs are of two
types, verbs which are dependent to nouns and verbs which are dependent to verbs.

2Government and Binding Theory https://en.wikipedia.org/wiki/Government and binding theory

9

In this work, the criteria for finiteness and non-finiteness of a verb is decided based on its ability to
stand independently in an utterance or not. Finite verbs can stand alone as completing the utterance and
non-finite verbs cannot.

Form Tense&Aspect Meaning
pOkunnu Present.Simple go

pOyi Past.Simple went
pOkuM Future.Simple will go

pOyikkoNtirikkunnu Present.Progressive going
pOyikkoNtirunnu Past.Progressive was going

pOyikkoNtirikkuM Future.Progressive will be going
pOyirikkunnu Prsent.Perfect has gone

pOyirunnu Past.Perfect had gone
pOyirikkuM Fut.Perfect would/ should have gone

Table 2.5: Iflections for Tense & Aspect for the verb “to go”

2.3.4.1 Non-Finite Verbs

Non finite verbs are of two types, noun modifiers and verb modifiers. They are the participial form of
verbs with all the properties of verbs maintained. In Dravidian languages, a sentence will usually have
only single finite verb and rest of the verbs will be non-finite.

2.3.4.1.1 Relative Participles Relative participle is the most productive process to modify nouns in
Malayalam[37]. Such forms are created by adding a suffix “a” on verbs in present tense and past tense.
But unlike adjectives, they retain the properties of a noun modifier as well as a verb.

(5) parYayunna
say.PRST.adj-prtcpl

kAryam
matter

‘the matter which (someone) say(s).’

In the above example, parYayunna is in simple present tense. This is created by adding the “a” to
the simple present tense form of the root “to say- “parYayunnu. Suffix “a” can be added to present
continuous or present perfect form of verb as in examples below.

(6) parYaffukoVNtirikkunna
say.PRST.Cont.adj-prtcpl

kAryam
matter

‘the matter which (someone) has/have been saying).’

(7) parYaffirunna
say.PRST.PRF.adj-prtcpl

kAryam
matter

‘the matter which (someone) had said).’

10

Similarly relative participle form in past tense can also be created by adding suffix “a”.

(8) parYaffa
say.PAST.adj-prtcpl

kAryam
matter

‘the matter which is said.’

2.3.4.1.2 Adverbial Participles Verb modifiers are dependent either on other non-finite verbs or on
the finite verb. Such forms are created by adding suffixes which are in turn creates subordinate clauses
and hence make discourse level relations. Various suffixes used are given in the table.

Suffixes “i & itt are used to describe the event that has completed or has to be completed before the
main event.

(9) fAnZ
I

vIttil
house.LOC

poyi
go.prtcpl

ooNu
food

kalYYiccu.
eat.PAST

‘Having gone home I ate food.’

In the above example, the action of going home has happened before the action of eating food. Suffixes
“i & itt are used interchangeably to describe an event happened before.

“AnZ” describes the event that has to happen/happened after the main event.

(10) fAnZ
I

UN
food

kalYYIkkAnZ
eat.prtcpl

vIttil
house.LOC

pokuM.
go.FUT

‘I will go home to eat.’

Here suffix “AnZ” describes that the event of eating will happen only after the action of going home.
“uka can be considered as an infinitive but such forms can come as main verb also. Suffix “uka”

represents the status. In the example given below, meaning of the word “kalYYIkkuka” is “in the state
of eating”.

(11) fAnZ
I

UN
food

kalYYIkkuka
eat.prtcpl

AN.
is.COP

‘I am in the state of eating food’

Such forms do not inflect for tense but for aspect. The tense information will be present in the finite verb.

(12) fAnZ
I

pAtikkoVNtirikkuka
sing.CONT.prtcpl

Ayirunnu.
be.PAST

‘I was in the state of continuing to sing’

Simultaneous actions are described by the suffix “irikke”.

(13) fAnZ
I

pAtikkoVNtirikkeV
sing.CONT.prtcpl

avalYZ
she

vannu.
come.PAST

‘While i was singing she came.’

11

In the above example, action of coming happened while the action of singing was happening. conditional
events are expressed by “AlZ”.

(14) nI
you

vannAlZ
come.conditional

fAnZ
I

varAM.
come.FUT

‘I will come if you come.’

Verbs with “AnZ & uka” suffixes do not represent any tense, but can inflect for aspects[37]. Whereas
forms with all other suffixes can be inflected for tense and aspect.

Form Suffix Meaning
pOyi i having gone

pOyitt itt after having gone
pOkAnZ/pOkuvAnZ AnZ to go

pOka/pOkuka uka go(obligation)
pOyirikke irikke while gone
pOyAlZ AlZ go- conditional

pOkuMpolYZ pOlZ when (you) go
pOyappolYZ pOlZ when (you) have gone

Table 2.6: Non-finite/ Infinite verb forms

2.3.4.2 Pronominalised Verbs

In Dravidian languages, pronominalised verbs can be created from relative participle form of verbs.
These forms can be considered as verbs as well as nouns since these words retain the properties of both
nouns and verbs. pOkunnaw, vannirikkunnavanZ, pAdiyavlYZ.

• Considering them as nouns, they can inflect for all the cases,

• Considering them as verbs, they can inflect for various tense and aspects. Above all they can take
arguments of verbs.

(15) nI
‘you

kettaw
hear.PAST+nml.sfx

sawyaM
true

alla
no

‘What you heard is not true’

(16) nI
‘you

kettawilZ
hear.PAST+nml.sfx+loc

sawyaM
true

illa
no

‘There is no truth is what you heard.’

12

2.3.5 Adjectives

Adjectives are the modifiers of the nouns. Adjectival suffix in Malayalam and in all other Dravidian
languages is “a”[57]. Pure adjectives without the properties of verbs in Malayalam are very few like,
“nalla(good)”, “ceVrYiya(small)”, “valiya(big)”.. etc.

(17) cerYiya
‘little

manushyaruM
men+and

valiya
big

lOkavuM
world+and

‘little men and big world.’

2.3.6 Adverbs

Adverbs are the modifiers of verbs. In comparison with adjectives, adverbs have relatively free
position in a sentence [37]. Adverbs usually specify time, place, manner etc of an event. Based on
that there are different types of adverbs namely, spatial adverbs, temporal adverbs, Manner adverbs etc.
With distal and proximal markers “a & i”, there are separate suffixes for creating spatial, temporal and
manner adverbs.

type suffix forms meaning
Spatial iteV aviteV/iviteV there/here

Temporal polYZ appolYZ/ippolYZ that/this time
Temporal nn ann/inn that day/ this day
manner ffaneV anffaneV/inffaneV like that/this

Table 2.7: Various types of adverbs from distal & proximal markers

Other spatial, temporal and manner adverbs are wAlYYeV(under), mIweV(above), innaleV(yesterday),
nAlYeV (tomorrow), pawukkeV(slowly), vegaM(fast), peVtteVnn(suddenly), otukkaM(finally), itakku(in
between).

2.3.7 Conjunctions

Conjunctions are the connectives of two actions or entities. There are two types of conjunctions,
Coordinative and subordinative. Coordinate conjunctions are words or phrases which connect two or
more equal parts in a sentence(two NPs, two main clauses etc). Subordinate conjunctions connect two
unequal parts in a sentence(a dependent clause with a main clause). In Malayalam, morphological or
syntactical evidence for a verb being finite or non-finite in terms of features such as tense, agreement is
disputable because of the multiple tense markers in verb forms and lack of agreement. Hence semantic
completeness of an event would be the more suitable property for deciding finiteness and infiniteness
of a sentence. Many of the common coordination and subordination function are fulfilled by suffixes
which attached to Nouns or verbs.

13

2.3.7.1 Coordinate Conjunctions

Usual coordinate conjunctions like “and” and “or” are not single words but distributed suffixes that
can be attached to nouns or verbs in Malayalam. Suffix “um” is for showing and-relation. With verbs,
“um” attaches with infinitive form of verb.

(18) ayAlYuM
he+and

njAnuM
me+and

‘He and me’

(19) avanZ
he.PRP

elYYuwukayuM
write.INF+and

vAyikkukayuM
read.INF+and

ceywu
do.PAST

‘He wrote and read.’

Example 16 is the instance for conjunction suffix “um” is added to nouns. Where as Example 17 is
to show the conjunction of two events where suffix “um” is added to the infinitival form of the verbs
“elYYuwuka” and “vAyikkukay”. Similarly Suffix “o” is for showing or-relation. Example 18 is the
instance of adding disjunction suffix “o” to nouns for showing disjunction. Example 19 is for showing
disjunction of 2 events.

(20) avanO
he.or

njAnO
me.or

‘He or me’

(21) njAnZ
I.PRP

varukayo
come.INF+or

kANukayo
see.INF+or

illa
no

‘I do not come or see.’

Other main coordinate conjunctions are pakSheV, kAraNaM, pinneed etc. Coordinate conjunctions con-
nects semantically independent events.

(22) njAnZ
I.PRP

vannu
came.PAST

pakSheV
but

avanZ
he

vannilla
come.PAST.neg

‘I came but he did not come.’

In the above example,

2.3.7.2 Subordinate Conjunctions

Number of subordinate conjunctions are more compared to coordinate conjunctions. Common sub-
ordinate conjunctions are eVnkilZ, eVnnAluM, eVnn, eVnkiluM etc. According to traditional grammar
[57], “eVnZ” is a verb root which does not inflect for every tense, aspect and modality. This form
refers to whatever came before that. But over the time, adverbial participle forms of this verb roots like
eVnkilZ, eVnnAluM, eVnn, eVnkiluM became frozen and now being used as connectives. Since “eVnZ”
refers to previous event, they are treated as subordinate conjunctions in this work.

14

(23) avanZ
he.PRP

varuM
come.FUT

eVnkilZ
if

njAnZ
I

varAM
come.FUT

‘If he will come, then I will come.’

In the above given example both the two verbs “varuM” and “varAm” are finite, but the conjunct
“eVnkilZ” makes the first verb ”varuM” semantically dependent to the second verb “varAM”. Hence
“eVnkilZ” is a subordinate conjunction.

(24) avanZ
he.PRP

varuM
come.FUT

eVnn
if

avanZ
he

parYaffu.
say.PAST

‘He told that he will come’

In the above example, “eVnn” behaves similar to “that” in English. Given below is an example of
“concession”. When conditional form eVnkilZ is added with “um”, the word eVnkiluM gives the
sense of concession.

(25) avanZ
he.PRP

varilla
come.NEG

eVnkiluM
even

njAnZ
though

avaneV
I

vilikkuM
he.ACC call.FUT

‘Even though he will not come, I will call him.’

2.3.8 Interjections

Interjections are the words or phrases that is being used to express particular emotions or sentiments
of the speaker. Such words are used very less in text when compared to speech. Few common interjec-
tions in Malayalam are ayyO, O, daivmeV.

(26) ayyO
alas

aw
that

pOyi
loss.PAST

‘alas lost it.’

15

Chapter 3

Sandhi Splitter

3.1 Introduction

Sandhi splitting is the primary task for computational processing of text in all Dravidian languages.
In these languages, words can join together with morpho-phonemic changes at the point of joining. This
phenomenon is known as Sandhi. Sandhi splitter splits the string of conjoined words into individual
words.

3.2 Sandhi

The word Sandhi has its origin in Sanskrit with the meaning ”union“. Sanskrit grammarian, Panini in
his treatise on Sanskrit grammar called Ashtadhyayi, used the term Samhita for explaining the process
Sandhi. Samhita1 is the close proximity of two letters either within a word or between two words which
results into the natural phonetic combination of these letters[27]. The process of Sandhi or ”union“ in
languges, makes the energy consumption minimal for pronunciation. Gerard Huet[21] explains Sandhi
as a phenomenon which occurs when a word w1 is followed by a word w2, some terminal segment
of w1 merges with some initial segment of w2 to be replaced by a smoothed phonetic interpolation,
corresponding to minimizing the energy necessary to reconfigurate the vocal organs at the juncture
between the words. The presence of Sandhi is abundant in Sanskrit and all Dravidian languages. Sandhis
are of two types, Internal and External. Internal Sandhi is within a word where it exists between root(s)
and suffixes.

waw(that) + smin(LOC.suf)→ wasmin(in that)

External sandhi is between two words.
wasya(his) + eva(only)→ wasyEva(his only)

This property of languages ie joining different types of words, which in turn becomes a hurdle for
computational processing. Due to Sanskrit’s highly synthetic behaviour, even a sentence with 50-60

1parassannikarRaH saMhiwA - Ashtadhyayi:1.4.108

16

words can be found in old Sanskrit manuscripts . Compared to Sanskrit, Sandhi in Dravidian languages
is relatively simple on two aspects.

• Sandhis are generally unambiguous as opposed to Sanskrit.

• Number of words inside a Sandhied string tend to be very less.

3.3 Sandhi in Malayalam

Even Though Sandhi in contemporary literature is less in comparison with old Malayalam literatures,
the presence of Sandhi between words is still prevalent in both Spoken and written Malayalam.

avanAraaN

Above given is a sentence in Malayalam which means “Who is he ?”. It is composed of 3 indepen-
dent words, namely “avan (he)”, “aar(who)” and “AN(is)”.

anganeyANennANaddehaM parYanjaw.

This is also a valid sentence in Malayalam, which can be roughly translated into English as “He told
that it is like that”. Here the first string contains 4 individual words in it, namely “affaneV(like that)”,
“AN(is)”, “eVnn(that)”, “AN(is)”, “AxxehaM(he)” and the second string “parYaffaw” which means
“that which said”.

However, in general a sandhied string can be split into valid words by splitting only at unique split-
points in any context. for a word is very less in Malayalam.

3.3.1 Internal Sandhi

Internal Sandhi exists between a root or a stem with a suffix or a morpheme. In the example given
below,

para + unnu = parayunnu

Here para is a verb root with the meaning “to say” and unnu is an inflectional suffix for marking
present tense. They join together to form parayunnu, meaning “say”(PRES).

Jaya + ude = jayayude

Here Jaya is a proper noun, and ude is genetive marker. They join together to form jayayude, meaning
“Jaya’s”.

17

3.3.2 External sandhi

External sandhi is between words. Two or more words join to form a single string of conjoined
words.

ceyyuM + enkil = ceyyumenkil

ceyyuM) is a finite verb with the meaning “will do” and enkil is a connective with meaning “if”. They
join together to form a single string ceyyumenkil.

For computational purposes, External Sandhi is the matter of concern because, individual words
present in the conjoined string cannot be identified.

3.4 Sandhi Splitting

Sandhi splitting is the process of splitting a string of conjoined words into a sequence of individual
words, where each word in the sequence has the capacity to stand alone as a single word. To be precise,
Sandhi splitting facilitates the task of individual word identification within such a string of conjoined
words.

ceyyumenkil = ceyyuM + enkil

3.4.1 Importance of Sandhi Splitting

Words are the important components of a meaningful text which explains why word identification
is crucial for the computational processing of the text. All the text processing tasks require individual
words in the text to be identified.

In Sanskrit and Dravidian languages, the identification of words becomes complex when words are
joined to form a single string with euphonic changes at the point of joining. Moreover, the Sandhi can
happen between any linguistic classes like, a noun and a verb, or a verb and a connective etc. This leads
to misidentification of classes of words by POS tagger which eventually affects parsing. Sandhi acts as a
bottle-neck for all term distribution based approaches for any NLP and IR task. Thus, for computational
processing of these languages, Sandhi has to be split for identifying the individual words present in the
conjoined string.

18

3.4.2 Sandhi Splitting vs Word Segmentation

Sandhi splitting is a different type of word segmentation problem. Languages like Chinese [5],
Vietnamese [17] Japanese, do not mark the word boundaries explicitly. Highly agglutinative language
like Turkish[40] also needs word segmentation for text processing. In these languages, words are just
concatenated without any kind of morpho-phonemic change at the point of joining, whereas morpho-
phonemic changes occur in Sanskrit and Dravidian languages at the point of joining [33].

3.5 Related works

Mittal [33] adopted a method for Sandhi splitting in Sanskrit using the concept of optimality the-
ory[42], in such a way that it generates all possible splits and validates each split using a morph analyser.
In another work, statistical methods like Gibbs Sampling and Dirichlet Process are adopted for Sanskrit
Sandhi splitting [38]. [28] used CRF for making fully statistical Sandhi Splitters for Agglutinative
languages.

To the best of our knowledge, only two related works are reported for the task of Sandhi splitting in
Malayalam. Rule based compound word splitter for Malayalam [36], goes in the direction of identifying
morphemes using rules and trie data structure. They adopted a general approach to split both external
and internal sandhi which includes compound words. But splitting a compound word which is concep-
tually united will lead to the loss of linguistic meaning. Another work [14], which is a hybrid approach
for sandhi splitting in Malayalam, employs a TnT tagger to tag whether the input string to be split or not
and splits according to a predefined set of rules. But this particular work does not report any empirical
results. In our approach, we precisely identify the split point in the string using statistical methods and
then apply predefined set of character level rules to split the string.

3.6 Various Approaches

Broadly,there are 2 types of approaches that have been tried, one being Rule-based, and the other
being a Hybrid method where the split points are identified statistically and the split is effected by
character level rules to induce the morpho-phonemic changes.

3.6.1 Rule based Methods

Rule based methods are the ones in which hand-crafted rules are employed to accomplish a task. For
the task of Sandhi Splitting, two rule based methods have been attempted, where one uses a look-up
dictionary and the other uses a suffix list.

19

3.6.1.1 Look up Dictionary Based

In Look up Dictionary Based approach, a string is being split into its possible linear combinations
of characters and then hand-crafted character level rules are applied to those two words to revert the
morpho-phonemic changes that occurred post-Sandhi. Then those words are checked in the look-up
dictionary for lexical validity. If those words are present in the dictionary, then it is considered a valid
split.

3.6.1.2 Root and Suffix Based

The idea behind this method is that the basic structure for any word in any language will be Root+

Suffix. The presence of a sequence of root-suffix pattern is a clear indication of a valid set of splits
which is exploited in this method. Here, a given string is traversed backwards from the last character
and checked against with the suffix list. On encountering a valid suffix, the backward traversal continues
until another valid suffix is encountered. If the other suffix is found, then the split is done at the boundary
of that suffix.

3.6.1.3 Problems with Rule based method

Eventhough rule based methods provide good insights about the problem, the solutions provided by
them are not efficient. In the first method 3.6.1.1, it is a nearly impossible task to create the list of words
which encompasses all the possible inflections and derivations of every possible word in the language.
Moreover, it will be computationally a complex task to maintain a dictionary. The problem with second
method3.6.1.2 is that the listed suffixes could be a valid non splittable part of a string. For such cases
one will have to write many rules and that will be endless and inefficient. All rule based methods will
have to maintain a list of rules or a list of suffixes/characters.

3.6.2 Hybrid Method

In a hybrid approach,split points are identified statistically and subsequently the string is split into
words by applying a set of pre-defined character level sandhi rules Table 1. The scope of these rules are
largely unambiguous because the split point is already determined statistically unlike a purely rule-based
approach.

3.6.2.1 Sandhi Rules

Sandhi rules for external sandhi are identified out of a corpus of 400 sentences from Malayalam
literature, which includes text from old literature(texts before 1990) as well as modern literature. In
comparison with text from old literatures, modern literature have very less use of sandhi. By analysing

20

the text, we were able to identify 5 largely unambiguous character level rules which can be used to split
the word, once the split point is statistically identified. Sandhi rules identified are listed in the Table 1.

R Rule Example

1
(CSC)Vs =

(CSC)S + V

vAkkilla = vAkk+ illa

word(Noun)+no(verb)

2 (ya/va)Vs = V
pediyAN = pedi + AN

fear(Noun) + is(verb)

3 maVs = M + V
paNamilla = paNaM + illa

money(Noun) + no(verb)

4 (ra/la/lY Y a/na/Na)Vs = rZ/lZ/lY Y Z/nZ/NZ + V
mukalYYilAN= mukalYilZ + AN

above(Loc)+is(verb)

5
CVs =

(CS) + V

ANeVnn = AN + eVnn

is(verb)+that(quotative)

6 just split
avanZvannu = avanZ+vannu

He(Noun)+Came(verb)

C=Consonant, V =Vowel, Vs=Vowel symbol, S=Schwa

Table 3.1: Sandhi rules

Rules in Table 1 are given in a particular order corresponding to their inherent priority which avoids
any clash in the order of application of rules. Every character level Sandhi rule is based on a consonant
and a vowel. Rule 5 is the most general rule for Sandhi that we could identify in Malayalam which
states that a group of a consonant and a vowel can be split into a consonant and a vowel. Rule 1 is
a special case of Rule 5, which is framed in order to treat the special case of consonant gemination
with a schwa in between. This rule is being introduced , because the consonants specified in rules 2,
3 and 4 can appear as the last consonant in the case of geminated consonants. This will lead to an
inappropriate split of the string by any of the rules 2, 3 or 4. So every word, with an identified split
point should be primarily checked against rule 1 to avoid wrong split by other rules in the case of a
sandhi exhibiting consonant gemination. Rule 2 is to handle the process of phonemic insertion that
happens post-Sandhi. In Malayalam, these extra characters ya/va can be inserted between words after
sandhi in certain contexts. Rule 3 and Rule 4 are to handle the case of phonemic variation caused due
to the process of Sandhi. Rule 3 enforces that, the letter ‘ma’ with a vowel symbol becomes ‘M’ and
a vowel, while Rule 4 enforces that, the characters, ‘ra/la/lYYa/na/Na’ with a vowel symbol becomes
chillu2, ‘rZ/lZ/lYYZ/nZ/NZ’ and a vowel.

2A chillu is a pure consonant which can stand alone independent of vowels

21

3.6.2.2 Split point identification

The hybrid approach utilises the phonological changes [25] due to the presence of sandhi. The
remaining part of the paper explains this approach in detail, with theoretical formulation, Experimental
Results and Error analysis.

When the words are conjoined, they undergo phonological changes at the point of joining. These
phonological changes can be evidential in identifying the split point in the given string of conjoined
words. For example, words Wx and yZ are conjoined to form a new string Wx

′
y
′
Z. As a part of this

process, substring x in the original string Wx has undergone a phonological change to become x
′

and
the substring y in the original string yZ has undergone a phonological change to become y

′
. We try to

identify the split point between x
′

and y
′

in Wx
′
y
′
Z using x

′
and y

′
as the evidence. Going forward, we

use Sp to denote Split Point and Nsp to denote Non Split Point. P (Sp|x
′
, y

′
) will give the probability of

a character point between x
′

and y
′

within a conjoined string to be a split point. A character point will
be classified as split point if,

P (Sp|x
′
, y

′
) > P (Nsp|x

′
, y

′
) (3.1)

As per our observation, the phonological changes of x to x
′

and of y to y
′

are independent of each other.
So,

P (Sp|x
′
, y

′
) = P (Sp|x

′
) ∗ P (Sp|y

′
) (3.2)

To produce the values of x
′

and y
′

for each character point, we take k character points backwards and
k character points forward from that particular point. For example, the probability of the marked point
PointX in the string given in the Figure 1 below to be a split point is given by equation (3)

Figure 3.1: Split point

P (Sp|a1a2...ak) ∗ P (Sp|b1b2...bk) (3.3)

Where a1a2...ak is x
′

and b1b2...bk is y
′
. The value of k is experimentally optimized.

The split points of different agglutinated strings in training data are annotated in the following format.

22

WordN = i1, i2, i3, ...iz

This indicates that the string WordN needs to be splitted at “z” character indexes i1, i2, i3, ...iz within
the string.

Figure 3.2: Word trie

We employ two Orthographic Tries [59] to statistically capture the phonological differences in x
′

and
y
′

for split points and non-split points. A mould of orthographic tries used is given in Figure 2. The
trie in Figure 2 is trained with character sequences c1c2c3, c1c2c4, c1c3c4, c1c3c5. In the first trie, the
path from root to k nodes represents the string a1a2...ak. Each node i(1 ≤ i ≤ k) in the path stores the
number of occurrences of split points and non-split points in the entire training data which are preceded
by aiai−1...a1. In the second trie, a path from root to k nodes represent the string b1b2...bk. Each node
i(1 ≤ i ≤ k) in the path stores the number of occurrences of split-points and non-split points which are
succeeded by b1b2...bi. The frequencies stored in these trie nodes are used to calculate P (C|a1a2...ak)
and P (C|b1b2...bk) where C is Sp or Nsp.

As split points are rare within a string P (C|a1a2...ak) and P (C|b1b2...bk) needs to be smoothed. For
this purpose, we use the information stored along the depth of the tries for the strings a1a2...ak and
b1b2...bk as follows

P (C|a1a2...ak) =
k∑

i=initial skip

P (C|aiai+1...ak) (3.4)

P (C|b1b2...bk) =
k∑

i=initial skip

P (C|bibi+1...bk) (3.5)

23

Here the initial-skip decides optimum ’smoothing range’ within the string.The value of initial-skip

decides the threshold phonological similarity that needs to be considered while smoothing. The exper-

imental optimisation of initial-skip is done. The identified split points are splitted using the applicable

sandhi rules.

3.6.2.3 Data and Results

3.6.2.3.1 Data Set We created a dataset which contained 2000 Sandhi bound words for training.

Each of the split point within the word are annotated with the within-word index of the corresponding

character point. The test data contains 1000 random words, out of which 260 are words with sandhi.

3.6.2.3.2 Results In our experiments, we tried evaluating the accuracy of split point identification,

split accuracy of different sandhi rules and overall accuracy of the system. By overall accuracy, we

mean percentage of the words with sandhi in which the split is exactly as expected. We have conducted

experiments on split point identification with different values of k and initial Skip.

k-S P R F Accuracy
3-1 85.37 75 79.85 89.6
3-2 84.73 73.26 78.58 88.7
4-1 86.56 76.04 80.96 90.1
4-2 85.48 73.61 79.10 89
5-1 88.37 79.16 83.51 90.9
5-2 85.94 74.30 79.30 88.7
6-1 88.50 80.20 84.15 91.1
6-2 85.59 76.38 80.88 89.2

Table 3.2: Results

Here P implies precision, R implies Recall, F implies F-measure and k-S implies k and Initial skip

respectively. k=6 and initial Skip=1 have shown the better result. As per our observation, phonological

changes as a part of sandhi would not happen beyond a range of six characters in each of the participating

words. So the upper bound for k value is taken as 6.

24

3.6.2.4 Error Analysis

In Split point identification, most of the incorrectly identified split points are character points between

a word and inflectional suffix attached to it. As the system evolve, this error can be rectified by the use

of a post-processor which maintains the finite list of inflectional suffixes in the language. Wrong splits

in the middle of an actual word are very few in number and will reduce as the size of the training data

increases.

Most of the unidentified split points are due to the presence of certain rare patterns. These errors will

be reduced with the incorporation of words from diverse texts in the training data.

When it comes to rules, we have used only character level rules for splitting the identified split points.

Rule 1,4 and 5 go ambiguous at certain rare contexts. To resolve this, certain word level information like

POS tags are required. But for an accurate POS tagging, particularly for this disambiguation purpose, a

sandhi splitter with a good level of accuracy is inevitable. Our Sandhi splitter can contribute for a better

POS tagger. Vice versa, a POS tagger can complement the Sandhi splitter.

Rule Accuracy
1 92.10
2 96.29
3 100
4 80.64
5 87.71

Table 3.3: Rule accuracy when k=6 and S= 1

3.6.3 Sandhi Splitter using CRF

In 2015 [28], the same idea of finding split points by mining character level patterns has been imple-

mented along with the automatic word segmentation and correction using Conditional Random Fields.

They used “Wx” transliteration scheme instead of utf-8 characters for their experiments. There are

2 stages, one for split point identification and other for segmentation with correct morpho-phonemic

changes. In the first stage, each character is classified to split points and non split points, with morpho-

phonemic change at the split point as features. In the second stage, in order to predict the correct

morpho-phonemic change, they have extracted certain number of classes from the training data where

25

all the morpho-phonemic changes can be classified. Then they retrained the training data with this labels

and finally outputs the change as labels. The experiment results have been presented for both Telugu

and Malayalam. The reported scores are presented in the table given below.

Language Training data Test data Precision Recall F-Measure Accuracy
Malayalam 1926 1000 96.94 96.09 96.51 90.50

Table 3.4: Data and Results of CRF Sandhi splitter

Fully statistical sandhi splitter using CRF gives almost similar performance on the same data.

3.6.4 Various methods of evaluation

There are 3 different ways to evaluate the overall accuracy of a word segmentation system. The data

can be represented in the algebraic form, where the conjoined string comes on the Left Hand Side and the

individual words present in that conjoined string come on the Right Hand Side. abcd = ab+ c+ d

3.6.4.1 Method 1

In the first method, only those lines are considered as true where the LHS = RHS. Then the overall

accuracy of a sandhi splitter is given as

Number of lines where LHS = RHS

Total number of instances
(3.6)

Disadvantage of this method is that, it misses out a a lot of correct words identified.

3.6.4.2 Method 2

In this method, all the correct tokens in RHS will be given 1/nth score where “n” is the actual number

of tokens should be present in RHS.

Sum of partial scores

Total number of instances
(3.7)

This method, does not provide any valid information about the performance.

26

3.6.4.3 Method 3

In this method, all the correct tokens on the RHS will be given 1. According to this, the overall

accuracy of a sandhi splitter can be identified by

Number of correct words in RHS

Total number of actual words
(3.8)

Since the task of sandhi splitting is a word identification problem, the correct method of evaluation

would be Method 3 which takes the number of correct words identified into account. Hence in this

work, Method 3 will be followed.

Method Accuracy
Method 1 91.1
Method 2 92.83
Method 3 87.5

Table 3.5: Results of various sandhi splitter evaluation methods

Due to the unavailability of the data used by [28], results of various evaluation methods explained

above on that data could not be presented.

3.6.5 Conclusion

Various rule based, statistical and hybrid methods for sandhi splitting have been explained. Rule

based methods are effort-intensive since management of dictionaries or rules are involved. But statis-

tical and hybrid methods are comparatively less effort-intensive and give good performance. The task

of statistical split point identification has confirmed that there exists a character level pattern in the text

where the Sandhi can be split. Various evaluation methods for automatic sandhi splitters are also ex-

plained. It is found that the one which takes number of correct words into account would be the apt

one for evaluating the overall accuracy of an automatic sandhi splitter since sandhi splitter facilitates the

task of individual word identification.

27

Chapter 4

Part Of Speech Tagger

Words can be classified into different classes based on their grammatical properties known as Part

of Speech which generally says the status of a word in a sentence. Part of Speech Tagger is tool which

automatically assigns a Part of Speech label to every word in the input sentence.

4.1 Part of Speech

Classification of words based on their grammatical properties can be traced back to ”Niruakta”(BC

5th/6th), a work on Etymology by Sanskrit grammarian Yaaska. In this work, he talks only about four

classes Noun, Verb, Prefixes and Particles. When it comes to Western counterparts, Plato and Aristotle

also talked about similar classification. By the end of 2nd century BC, Dionysius Thrax distinguished

between 8 word classes namely: Noun, Verb, Pronoun, Participle, Article, Preposition, Adverb, and

Conjunction, which is still being followed in traditional as well as modern grammars. Traditionally the

definition of Part Of Speech has been based on morphological and syntactic structure [61]. Schachter

[50] states that POS seem to occur in every natural language.

4.2 Part of Speech Tagging

Parts-of-Speech Tagging is a process of assigning tags to the words in a text as corresponding to a

particular part of speech, based on its definition and context. This is the first step towards understanding

the structure of any language. It finds its major applications like Speech Recognition, Speech Synthesis,

Information retrieval etc. A lot of work has been done on POS tagging. Input to a POS tagger will be

a string of words and output will be the POS tag for each word in the input. POS tags give significant

28

amount of information about the word and its neighbors.

Various methods have been attempted for different languages and broadly those methods can be

classified in to two types namely Rule based and Statistical.

4.2.1 Rule based

Rule based methods are where the hand-written rules are used to disambiguate and decide the Part-

Of-Speech Tag of a word. The earliest algorithms for automatic POS tagger involved two stage archi-

tecture, where the first stage contained the use of dictionary to assign a list of possible POS-tags to the

word and in the next stage, hand crafted rules were employed to decide the most suitable tag of the word

from the list of possible tags in the given context[24]. ENGTWOL is a similar rule based POS tagger

with two stage architecture, where the first stage contains all the entries in the lexicon annotated with

their morph information and second stage contains morph level and syntactic constraints. In this method

also, the first stage gives a list of all the possible POS-tags for a words and second stage disambiguate

and decides the most suitable POS-tag.

4.2.2 Statistical

Statistical taggers generally resolve tagging ambiguities by using a training corpus to compute the

probability of a given word with respect to its context[24]. Mainly there are 3 approaches, Supervised,

Semi-Supervised and Unsupervised.

There are 2 types of methods in supervised learning. One is being Generative and other is being

Discriminative. Generative methods are where the joint distribution of individual labels are calculated.

Whereas Discriminative models calculates the conditional probability with respect to the features.

4.2.3 POS Taggers for Indian Languages

Various rule based, statistical and Neural Network based methods have been attempted for Part-Of-

Speech tagging in various Indian languages.

One of the major attempt for creating POS Tagger for morphologically rich Indian languages was

using lexicon and decision tree algorithm [56]. Aniket [12] used MEMM, which showed a considerable

improvement in accuracy. Another work in Bengali language showed that Performance issues created

by stochastic systems can be improved by leveraging morphological information [13]. Manish [52]

29

used HMM and Naive stemming POS tagging which showed that morphological information can be

harnessed without the morphological analyzer or lexicons. Asif [19] has experimentally showed that

SVM works better than CRF,HMM and MEMM for Bangla. But on the other hand, Agarwal[2] showed

that CRF consistently outperformed both MEMM and HMM for POS tagging in Hindi and Telugu.

Coming to the language Kokborok, SVM outperformed CRF in POS tagging[18]. A CRF based POS-

Tagger for Gujarathi [41] also has been reported. Meanwhile [20] attempted to create a rule based POS

tagger for Hindi, using Regular Expressions, Rules and Lexicons which performed par with statistical

models.

Similarly, various works have been reported for Telugu, Kannada, and Tamil using statistical methods

like HMM, CRF, SVM, MEMM [43, 44, 16]. It is found that SVM and CRF outperformed both HMM

and MEMM [26].

Various works[46, 30, 4, 23] have been published for POS tagging in Malayalam. Since these POS

taggers failed to provide proper empirical results, models, data or code, we propose our own POS tagger.

4.3 Corpus creation

Malayalam has an annotated corpus which is created as the part of ILMT project. But this corpus is

not Sandhi split, and contains a substantial amount of of noise which is mostly unrecoverable. Hence we

are creating a separate corpus which has subsequently Sandhi split, POS Tagged and Chunked. For

the task of POS Tagging, a general news corpus of 70k words have been self annotated manually with

the help of bootstrapping. Annotation is done using an Annotation tool Sanchay[54].

4.3.1 Tagging Scheme

Tag-set used for POS annotation was BIS tag-set. BIS tag-set is a hierarchical tag set designed for

various Indian languages including Malayalam. For Malayalam, it contains 45 tags including the root

tag in the hierarchy. Annotation of Parts-Of-Speech has been done to facilitate the dependency parsing

using Computational Paninian Grammar(CPG)[7]. Hence there are various differences in Parts-Of-

Speech tag given to a word in comparison to the usual tags.

30

4.3.1.1 Differences in tagging

There are differences in terms of definitions given for certain category or type of words in comparison

with usual linguistic definitions. Those differences are mentioned below.

• NST is a special tag added for Indian languages. They are nouns denoting Time and Space like

“purYaww(outside)”, “mump(before)”. In these languages, such words can function as nouns and

in certain contexts as post-positions also. Hence such words are given a separate tag NST [6].

• Pronominalised verbs are the verbs with the properties of verbs as well as nouns. Such words are

tagged as Non-Finite Verbs(V VM VNF) since they can take arguments. The noun-inflections

present on them will be captured at the level of morph analysis.

• Only manner adverbs are tagged as ”Adverbs”(RB), because spacial and temporal words have

“karaka” relations with the verb. Hence they will be considered as Nouns(NN).

4.4 Parts-OF-Speech Tagger using Naive Bayes

Malayalam is a morphologically rich language. From a detailed linguistic analysis, it is understood

that most of the POS tags can be identified from the prefix and suffix information present in the word

and the importance of relative position of the word in identifying the POS tags is relatively very less.

Hence to verify this, similar method used for the task of Sandhi Splitting, ie Character level Trie Based

Naive Bayes, has been implemented. This method captures the prefix and suffix information present in

the word. A single fold experiment has been conducted and the results are presented below.

Training data Test data Precision Recall F-Measure Accuracy
56k 14k 90.48 90.52 90.50 90.48

Table 4.1: Results of POS Tagger using Naive Bayes

This experiment validates the hypothesis that most of the POS tags can be identified from the prefix

and suffix information present in the word. But the disadvantage of this method is that, it cannot capture

position information. Hence in order to capture both positional and morphological information we

decided to use Conditional Random Fields Classifier. Moreover it is experimentally proved that CRF

outperforms generative approaches like HMM and MEMM in POS Tagging in Telugu and Hindi [2].

31

4.5 Conditional Random Fields

Conditional random fields (CRF) are a probabilistic framework for labeling and segmenting struc-

tured data introduced by Lafferty in 2001 [29]. CRF is a discriminative model where conditional proba-

bility distribution over label sequences given a particular observation sequence is calculated rather than

a joint distribution over both label and observation sequences. The primary advantage of CRF over

Hidden Markov Models[45] is their conditional nature, resulting in the relaxation of the independence

assumptions required by HMM in order to ensure tractable inference. Additionally, CRF avoids the

label bias problem, a weakness exhibited by Maximum Entropy Markov Models (MEMMs)[48] and

other conditional Markov models based on directed graphical models. CRFs outperform both MEMMs

and HMMs on a number of real-world tasks in many fields, including in Bioinformatics, Computational

Linguistics, and Speech Recognition.

4.6 Experiments

Various experiments with CRF++1 have been conducted with different feature templates. 5 fold

validation has been done for every experiment. Total size of the annotated corpus is 70k and each fold

contains 14k words. In every fold, training data is 56k and test data is 14k.

4.6.1 Experiment Type - 1

The general criteria for identifying the POS tag of a word also includes its context, which means

POS tag of the current word can also be influenced by the POS tag of the previous and/or subsequent

word(s). Hence the first chosen feature for the task of POS tagging was the current word and its two

previous and subsequent words along with the combination of current and previous/subsequent words.

4.6.1.1 Result

Given below are the evaluation scores for Experiment Type - 2. This will be considered as the

baseline result.

1https://taku910.github.io/crfpp/

32

Exp.No Feature Precision Recall F-Measure Accuracy
1 2w+1 w combined 79.15 79.18 79.17 79.14

Table 4.2: Results of Experiment Type -1

4.6.1.2 Error Analysis

Figure 4.1: Results - Exp.No 1

This first experiment is to study the performance when only word level contexts are used. This ex-

periment gave an overall accuracy of 79%. For most of the tags, recall is less than 60% which indicates

that using only word level contexts is not sufficient for deciding the tags.

The major confusion in tags is in identifying nouns(N NN) and proper nouns(N NNP). Proper Nouns

are nouns which represent the name of a Person/Place/Organisation/Products etc. Since their syntactical

behavior is similar to those of nouns, most of the NNPs are getting identified as NNs.

Another source of error is with infinitive form of verb(V VM VINF). Most of the times, VINF got

confused with non-finite verb (VNF), because VINF and VNF share similar syntax. VINF got confused

also with NN. Ideally verb forms with the suffix, “uka & AnZ are tagged as VINF. Forms with ‘uka ”

are ambiguous in that they can function as infinitives as well as nominalized verbs. Hence we can find

33

nouns and VINFs in the same context.

This experiment shows that identification of tags like ”CC CCD”(Coordinate conjunctions), ”RD RDF”(Foreign

words), PR(Pronouns), ”JJ”(Adjectives), ”RB”(Adverbs) etc are comparatively less identifiable by using

only the contextual features. Number of instances with such tags are very less in the corpus. Pronouns

have syntactical as well as morphological behavior similar to that of nouns. Most of the times, these

tags are wrongly identified as Nouns, since the number of nouns are relatively very high. N NSTs are

nouns representing spatial and temporal things like below, above, etc. N NSTs are getting confused

with nouns since N NST can be a noun according to the context. The other confusing tag for “JJ” is

”QT QTF”(quantifier). Since the position QTF is before noun, some times “JJ”s are getting tagged as

QTF. Because of the scrambled position, “RB”s are confused with the ”NN”. In few cases, “RB”s can

come in the beginning of sentence whereas the verb which it qualifies may be in the middle or at the end

of the sentence.

To summarize, number of nouns in Malayalam is very high when compared to any other class. But

in order to capture the context of a particular category, it requires a lot of instances in the training data

since Malayalam is a relatively free word order language. Similarly the finer tags like VINF,VNF, VF

for verbs, QTF, QTO, QTC for quantifiers etc share similar contexts. Most of the words from categories

other than nouns and verbs have very high level of morphological similarity with nouns and verbs.

Hence the tag is not precisely decidable for the system with only word level context.

4.6.2 Experiment Type - 2

From Experiment Type - 1 it is visible that only using word level context as feature is not powerful

enough to identify the finer distinctions. Since Malayalam is a morphologically very rich language,

the next experiment is conducted with morphological features. Since morph analyser for Malayalam is

not available, first and last five characters of each word has been taken as extra features along with the

features of previous experiment. The intuition behind taking first and last five characters of each word

is that in almost all these words, these characters can capture the prefix and suffix information.

4.6.2.1 Results

Given below are the evaluation scores for Experiment Type - 2.

34

Exp.No Feature Precision Recall F-Measure Accuracy
2 2w+5p+5s+1 w combined 91.078 91.11 91.09 91.07
3 2w+5p+5s 91.20 91.24 91.22 91.20
4 1w+5p+5s 91.24 91.28 91.26 91.24
5 1w+4p+6s 91.25 91.29 91.27 91.25
6 1w+3p+7s 91.06 91.10 91.08 91.05

Table 4.3: Results of Experiment type 2

4.6.2.2 Error Analysis

Figure 4.2: Results - Exp.No 2

In Exp.No2, morph level features have been included. This experiment showed a 12% increase in

overall performance of the tagger compared to the baseline. In comparison to Exp.No.1, both Precision

as well as Recall of every tag has been considerably increased, especially those tags whose figures were

very less. However tags like ”NNP”, ”N NST” , “JJ”, “RB”, “QT QTO”(ordinals) have less Recall

when compared to other tags.

Major source of the errors is with the tag NNP. Due to the morphological and syntactical similarity

of NNPs with NNs, many instances of NNPs got tagged as NN. Recognition of such Named Entities

35

itself is one of the toughest problems in NLP.

Second major source of errors is with JJ(adjectives). ”JJ”s are mostly confused with the tag ”NN”.

Adjectives in Malayalam can be made out of nouns by adding the adjectival suffix “a” as svAwanwrya

in “svAwanwrya samaraM(freedom struggle)”. svAwanwryaM is the actual word and when it comes

to a compound that becomes svAwanwrya and such forms are tagged as “JJ”. Since the morphological

similarity is high, JJs are getting tagged as NNs. similarly JJs are confused with QT QTFs because both

JJs and QTFs modify noun and their position is mostly before noun.

Third source of error with RB. Because of the morphological similarity and scrambled position,

“RB”s are confused with the tag ”NN”. In few cases, “RB”s can come in the beginning of the sentence

where the word it qualifies may be in the middle or end of the sentence.

The fourth source of error is NST. As mentioned earlier, NSTs are spatial and temporal nouns. Due

to the morphological similarity and position of them in sentences as of nouns, they are getting tagged as

NNs.

Fifth source of errors are cardinals(QT QTC) and ordinals(QT QTO). In many instances, due to their

contextual and morphological similarities, QT QTC is getting tagged as QT QTO and vice verse. simi-

larly, both the tags are confused with quantifiers(QT QTF).

To summarize, most of the tags are confused with nouns since number of nouns in training data

is very high in comparison with their respective frequency. Hence, the morphological similarity with

confused tags become very high. Moreover finer distinction of finite, non-finite, and infinite verbs are

confusing for the tagger because, each of the category has only very subtle morphological variation with

the other.

4.6.3 Experiment Type - 3

This particular experiment is to verify the power of morphological features in deciding the POS tag

of a word. In manual tagging, most of the times, the tags are decided by the morphological features

present in the word.

4.6.3.1 Results

Given below are the evaluation scores for Experiment Type - 3.

36

Exp.No Feature Precision Recall F-Measure Accuracy
1 4p+6s 89.91 89.96 89.93 89.91

Table 4.4: Results of Experiment Type - 3

4.6.3.2 Error Analysis

Figure 4.3: Results - Exp.No 7

In comparison to Experiment 4.1, all the tags except “JJ” and “RB” maintained a good level of Preci-

sion and Recall. Confusion between “JJ” and “NN”, as well as “RB” and “NN” also has been increased.

This says that both RB and JJ need context level information as well for deciding the tag. Precision and

Recall of tags like ”CC CCD”, ”RD RDF”, “RP NEG” which were very less in Experiment 4.1 have

been increased considerably, because morphological information is the main deciding factor.

4.7 Overall Results

Given below are the evaluation scores for various experiments conducted.

37

Exp.No Feature Precision Recall F-Measure Accuracy
1 2w+1 w combined(Base Line) 79.15 79.18 79.17 79.14
2 2w+5p+5s+1 w combined 91.078 91.11 91.09 91.07
3 2w+5p+5s 91.20 91.24 91.22 91.20
4 1w+5p+5s 91.24 91.28 91.26 91.24
5 1w+4p+6s 91.25 91.29 91.27 91.25
6 1w+3p+7s 91.06 91.10 91.08 91.05
7 4p+6s 89.91 89.96 89.93 89.91
8 1rf+4p+6s 90.10 90.14 90.12 90.10
9 1lf+4p+6s 90.56 90.60 90.58 90.56

Table 4.5: Results

4.8 Conclusion

This chapter explained various experiments conducted for creating Parts-Of-Speech Tagger for Malay-

alam. Parts-Of-Speech Tagger has been created using Conditional Random Fields and experiments have

been conducted with various features. Experiment with the feature 4 prefix and 6 suffix characters

and single word context gave the highest accuracy 91.25%. From these experiments, it is visible that,

Malayalam has more dependency over word internal features like suffix and prefix information than

word external information like word contexts in deciding the grammatical category of a word.

38

Chapter 5

Chunker

Structure of a sentence is decided by the phrases/constituents present in in that sentence. Phrases are

a group of words or possibly a single word that functions as a meaningful unit of a sentence which is

determined by the grammatical category of words. Chunks are non-recursive phrases. Chunking is the

identification of chunks. [1]

5.1 Chunking

Chunking is a task of identification of non-recursive phrases from an input sentence. It has been

introduced by Abney[35] as a response to reduce the computational effort at the level of full parsing

by assigning partial structure to a sentence. One of the fundamental principles of chunking is that the

structure of chunks is more dependent on syntactic restrictions which can be represented by templates

[35].

5.2 Chunks

Concept of chunks in the field of Natural Language Processing has been introduced by Steven Abney

in 1992 [1]. According to him, a chunk consists of a single content word surrounded by a constellation

of function words. To be precise, chunks are non-recursive cores of phrases which contains only the

head or content word and its modifiers.

Phrases→ (S (NP The bald man) (VP was (VP sitting (PP on (NP his suitcase)))))

Chunks→ [The bald man]NP [was sitting]VP [on]PP [his suitcase]NP

In computational terms, for Abney[1], chunks are connected sub-graphs of a sentences parse tree. They

39

are defined in terms of a content word and their own syntactic structure that can be represented in the

form of a tree. However a chunk does not include all the descendants of the root node that may be

present in the parse-tree of the complete sentence.

Two heads of the same lexical category are not allowed inside a chunk. Consequently, “Johns house”

in English will have two chunks, [Johns] and [house] since both “John” and “House” are Nouns. Sim-

ilarly, verb complements are not grouped inside the verb chunk and they form separate chunks. The

English sentence “The bald man was sitting on his suitcase’ can be grouped into four chunks [The bald

man], [was sitting] and [on]PP [his suitcase].

Concept of chunks for Indian languages[6] has been defined as “A minimal (non recursive) phrase(partial

structure) consisting of correlated, inseparable words/entities, such that the intra-chunk dependencies

are not distorted.

5.3 Previous works

In the literature, one can find various methods applied to perform the task of chunking such as

Finite-State-Transducers, Transformation-based Learning(TBL), Memory-based Learning(MBL), Hid-

den Markov Models(HMM), Maximum Entropy(MEMM), Support Vector Machines(SVM), Condi-

tional Random Fields(CRF) etc.

The first attempt for shallow parsing is by Abney[1]using hand-crafted Finite-State-Transducers.

Ramshow and Marcus[47] used transformation based learning for NP chunking, where the problem

of chunking has been treated as a tagging problem. Memory Based Learning(MBL) techniques also

showed promising results in chunking [10]. It is a learning method where it stores the entire training

data with its respective probabilities for extrapolation. But MBLs are not capable of handling irrelevant

features which effects the performance [49]. CoNLL shared task gave a big boost to the research in

the area of shallow parsing. Various experiments considered chunking as a sequence labeling problem

which is still being followed. Molina and Pla [34] presented a new method for shallow parsing using

specialized HMM. This method gave better results than MBL. Generalization of Winnow algorithm

[62] was one of the other methods applied for shallow parsing. Winnow algorithms are known for their

robustness to irrelevant features and efficiency in performing linearly separable tasks. Since chunking

is not a linearly separable task, they modified the algorithm to perform on both linearly separable and

non-separable data. This method was one of the best methods that featured in CoNLL 2000. The AL-

40

Lis system [15] is a rule induction system where initial system is refined with contextualization and

lexicalisation operators. This incorporates linguistically motivated prior knowledge which showed a

significant improvement in the performance. Shallow parser based on the Conditional Random Fields

[51] outperformed all the previous methods.

5.4 Chunkers for Indian Languages

Various methods have been tried for chunking in Indian languages in last decade. The first work in

the direction of using machine learning for Chunking is by using HMM [53]. They claim that for certain

chunk categories, using only POS tag as feature gives better performance than using both the word and

POS tag as the feature. Aniket [11] presented a Chunker based on Maximum Entropy Models. A rule

based method proposed by Smriti Singh [55] identifies noun groups and verb groups by morphological

and POS tag features.

Only one work on Chunking has been reported in Malayalam [46]. This used TnT tagger for chunk-

ing. Since this chunker is not available, we propose our own chunker.

5.5 Chunking in Malayalam

In Malayalam, case markers and auxiliary verbs come together with nouns and verbs respectively

because of highly agglutinative nature of the language. As a result, most of the chunks will contain only

one word. Even though there are many instances where modifiers occur separately.

• Noun compounds.

vyAja vArwwa(fake news)→ [vyAja vArZtha]NP

• Noun modifiers like pure adjectives, quantifiers, ordinals, cardinals are coming before nouns

nalla kutti(good child)→ [nalla kutti]NP

• post positions coming after.

aviteV ninn(from there)→ [aviteV ninn]NP

• Particles post verbs and nouns.

pokAnZ wnneV wirumAniccu.(decided just to go)→ [pokAnZ wnneV]VGNF [wirumAniccu]VGF

41

In order to group the above given types, chunking is needed in Malayalam although most of the chunks

will be with a single word.

5.6 Data

70k data annotated for Parts-Of-Speech has been annotated with chunk information using IIIT-

Chunk-tagset. This tagset contains 10 tags. Chunk annotation has been done manually as well as

by validating a the output of the chunker with the help of an Annotation tool Sanchay.

5.7 Current Approach

Empirical experiments show that Conditional Random Fields(CRF) gives better results than any

other supervised machine learning methods. Manish Agarwal[2] showed that for Hindi and Telugu,

CRF consistently gave better results than MEMM and HMM for Chunking. Hence all the experiments

have been done CRF only.

5.8 Experiments

Standard feature template used for shallow parsing has been tried for the first experiment, where

two preceding and succeeding words with their POS tags have been taken as features along with its

combination. This gave an accuracy of 94.30%. In the second experiment, the same feature template

has been used without the combination features, which resulted in a marginal increase in precision,

recall and accuracy. Third and fourth experiments were to check the dependence of chunks over the

number of words preceding the succeeding words. It showed that the context window less than or more

than 2 result in decrease in the overall performance.

5.9 Results & Error Analysis

From all the results provided, it is visible that there are only very slight variations in the accuracy,

which can be disregarded. But there are few common errors which are not being corrected by the features

experimented. NP chunks are the ones with less accuracy in terms of precision and recall. Errors are

mainly due to separated noun compounds. According to the guidelines for chunking, two words from

42

No Feature Precision Recall F-Measure Accuracy
1 2w+2w+pos+combination 91.2 93.03 92.10 94.30
2 2w+2w+pos 91.05 93.18 92.10 94.33
3 3w+3w+pos 90.03 92.88 91.43 94.03
4 1w+1w+pos 90.24 93.08 91.63 94.19

Table 5.1: Accuracy of chunker with various feature templates

Tag Precision Recall F-Measure
BLK 99.682 98.724 99.198
CCP 95.65 98.4 96.996
JJP 25 10.614 14.22
NP 86.36 89.518 87.91

RBP 96.55 96.896 96.722
VGF 96.548 97.852 97.196

VGNF 96.048 97.876 96.95
VGINF 94.21 96.08 95.072
FRAGP 0 0 0
NEGP 0 0 0

Table 5.2: Tag-wise scores for chunker

the same open class should not be chunked together. Instances of single nouns with its modifiers are

very high in the corpus. Whereas in the case of compound nouns, which are separated, noun should be

chunked together because they together give the meaning. Hence such instances are always confusing

for the chunker. Number of instances of FRAGP, NEGP, are less than 5 in the whole corpus. hence

this cannot be learned. Tag for Adjectival Phrases, ie JJPs is given only when the adjectives are coming

post noun. Such instances are also very less in the whole corpus, hence this also will be tough for the

chunker.

5.10 Conclusion

Various experiments with different features for creating chunker for Malayalam have been explained

in this chapter. The template with 2 words before and after the current word along with their POS tags as

features gave the highest accuracy 94.33%. Experiments show that this template is the optimal one since

accuracy decreases when there is an increase or decrease in the number of contexts. When compared

43

to Parts-Of-Speech Tagging, chunking is relatively simple, since the number of classes to be learned is

very less and the model mainly depends only on the word contexts.

44

Chapter 6

Shallow Parser

6.1 Shallow Parsing

Shallow parsing is the task of identifying the non recursive phrases from a given sentence. A non

recursive phrase contains head word and its modifiers. Shallow parsing is a collective process in an

order by Tokeniser, Sandhi splitter, POS tagger and Chunker. A raw text will be given as the input and

the system tokenises, identifies individual words using Sandhi splitter, assigns POS tags to each word

and groups them to non recursive phrases and outputs.

To the best of our knowledge, no previous works have been reported for shallow parsing in Malay-

alam.

6.2 Architecture of the Shallow Parser

’Current shallow parser has 4 main modules in its architecture namely Tokeniser, Sandhi Splitter,

Part-Of-Speech Tagger and Chunker. Input to the Shallow Parser is a raw text and the output is a chun-

ked text with its POS and Chunk information of every word present in it. The diagram of the architecture

is given below in Figure 6.1 which is given earlier in the Introduction.

45

Figure 6.1: Pipeline Architecture

In this architecture, primarily the raw text will be taken as the input and each line will be split into

individual tokens including punctuation marks using a tokeniser. The tokeniser for Malayalam is a rule

based system. Output of the tokeniser will be passed to the Sandhi Splitter as its input.

Sandhi Splitter identifies the individual words present(if any) in each token and splits them into

separate tokens. We implemented a statistical sandhi splitter using the character level patterns which

identifies the sandhi splits with 87% accuracy. Output of the Sandhi splitter will be given as the input

for Part-Of-Speech tagger.

POS tagger gives grammatical tags for each token present in the input based on various word internal

and word external features.Output of the POS tagger will betaken as the input for Chunking.

Chunker identifies the non-recursive phrases from given input sentences. Experiments have been

46

conducted with chunker by varying the training features. Output of the chunker will be the final output

of this system.

6.3 Data for Experiments

Manually annotated 70k POS and Chunk annotated corpus which we used for POS tagging and

Chunking(4, 5) has been used for conducting various experiments for shallow parsing. Out of 70k data,

8k data has been taken as test data and remaining 62k as training data for POS tagging and Chunking.

For Sandhi splitter, training data is 2k as mentioned in chapter 3 and test data will be the same 8k data

which were employed for POS tagging and Chunking.

6.4 Experiments

Two types of experiments have been conducted to evaluate the error propagation rate of the Malay-

alam shallow parser pipeline. In the first type of experiments, individual modules in the pipeline are

considered as independent of the output of previous modules. In the second type of experiment individ-

ual modules are considered as dependent on the output of previous modules.

6.4.1 Experiment Type - 1

In these experiments, input to each module namely sandhi splitter, POS tagger and chunker is not

be affected by the performance of previous modules. This experiment evaluates the performance of

individual modules with respect to the current train and test data.

6.4.1.1 Results

feature Precision Recall F-Measure Accuracy
6-1 91.77 62.95 74.68 88.46

Table 6.1: Result of Sandhi Splitter

47

No Tag Precision Recall F-Measure Accuracy
2 1w+4p+6s 90.45 90.49 90.47 90.45

Table 6.2: Result of POS tagger

No Tag Precision Recall F-Measure Accuracy
1 2w+2w+pos 88.47 91.55 89.98 92.92

Table 6.3: Result of Chunker

6.4.2 Experiment Type - 2

In these experiments, output of one module will be given as input to the next module, hence the

performance of the previous module effects the next module. These experiments are to evaluate the rate

of error propagation from each module which eventually affects the final output.

6.4.2.1 Method of Evaluation of Pipeline

Evaluation of Sandhi splitter and POS taggers are based on words. If the number of words in the

test data and gold data does not match, evaluation of the system becomes difficult. Sandhi splitter is an

important module in this pipeline. Sandhi splitter splits a token into individual words if the token has

more than one word present in it. Sandhi splitter employed in this pipeline is a hybrid system which

gives 88% accuracy. This system can produce 2 major errors which becomes a hurdle in the process of

evaluation of all the subsequent modules.

• Not splitting a token which has to be split into words.

• Splitting a token which should not have been split.

By these errors, number of words in the test data and gold data does not match which makes the usual

evaluation process impossible. In order to make the evaluation possible, the data representation of all

the output of the Sandhi splitter as well as the gold data have been stored in such a way that it will be

able to represent whether the input got split or not.

SandhiedString = Sandhied/Ptag/Ctag + string/Ptag/Ctag

Ptag = POS-tag, Ctag = Chunk-tag

48

This representation brings both the system output and gold data in the same format which enables the

one-to-one comparison of strings. Accuracy of the pipeline is calculated based on number of words that

got correct surface form (in sandhi splitting), POS tag. The final accuracy is based on the number of

chunks correctly identified with correct number of proper words and POS tags.

6.4.2.2 Results

Shallow Parser pipeline evaluation scores are given below.

tokeniser+sandhi tokeniser+sandhi+pos tokeniser+sandhi+pos+chunk
88.46 79.87 71.38

Table 6.4: Pipeline Accuracies

6.5 Error Analysis

Accuracy of the sandhi splitter is 88%. This Sandhi splitter creates 2 types of errors as mentioned in

6.4.2.1.

1. Not splitting a token which has to be split into words.

2. Splitting a token which should not have been split.

In this experiment, error 1 is more prevalent than error 2. For example, “arYivilla(no knowledge)”

should have been split into “arYiv(knowledge) and illa(no)”. But the system failed to do so. This prob-

lem is due to the lack of diverse patterns in training data. When it comes to error 2, split occurs either

between a root and its suffix or just splits in common sandhi split points like “ya, va or ma”. The

word “aticcamarZwwi(suppressed)” got split into ”aticcaM”and “arZwwi” which is meaningless. This

problem is also due to the lack of diverse patterns in training data. Another cause of errors are rules

employed in Sandhi Splitter for inducing morpho-phonemic changes after split. Though the system cor-

rectly identified “n” as split point for “AIDSnulYYa(which is for AIDS)”, but when the rules got applied,

this bacame ”AIDSnZ”+ “ulla”, where it should have been simply “n” which represents a dative case

suffix. Whereas “AIDSnZ” in which it is meaningless.

The errors in sandhi splitting will eventually effect the performance of Parts-Of-Speech Tagger in

49

two ways along with sole errors created by POS tagger. Which means 12% of errors from Sandhi

Splitter has been propagated to POS Tagger, along with 8% of errors from POS Tagger. Since it is in

a pipeline, wrongly split tokens that POS tagger get have unknown patterns which make the system

unable to predict the tag accurately and subsequently, this will affect the word level context as well.

Though such cases are very rare, one example would be “rAjAvAN” (is king) got split into “rAjA” and

“AN”, where it should have been “rAjAv” and “AN”. Here “rAjA” got tagged as JJ and “AN(is)” ideally

a verb but got tagged as NN, since the previous word got tagged as JJ.

Errors from both Sandhi splitter and POS Tagger effect the performance of Chunker. 20% of errors

together from POS Tagger and Chunker have been propagated to Chunker. A chunk is tagged as incor-

rect when the words and number of words along with their respective POS tags are not correct. Many

instances have 2 or more words per chunk and the chunk tag is decided based on POS tags of words.

Since it is in a pipeline, two types of errors can propagate,

• Errors due to unidentified or wrongly identified words from Sandhi splitter.

• Errors from POS tagger, which was effected or unaffected by the errors from sandhi splitter.

There are many instances where snadhi splitter could not identify individual words from a token like

“arYivilla(no knowledge)”. Ideally “arYiv and “illa”, where the first word is a Noun and the other is a

Verb. Hence there should be a noun chunk(NP) and a verb chunk(VGF). Since individual words are not

available, POS tags and chunk tags will be wrongly identified. Similar would be the case of wrongly

identified words.

6.6 Summary

Shallow Parser pipeline for Malayalam has been explained in this chapter. Pipeline includes 4 mod-

ules; tokeniser, Sandhi Splitter, POS tagger and Chunker. Results of Individual modules and pipeline

have been presented along with the method of pipeline evaluation. Results from the pipeline experiment

show the need of a highly accurate Sandhi Splitter. Error propagation due to the the performance of

Sandhi Splitter is very high when compared to other modules. Accuracy of the POS Tagger, came down

to 79% from 90% due to the errors caused by Sandhi Splitter and further this brought down the accuracy

of chunker to 77% from 92%.

50

Chapter 7

Conclusions

In this thesis we have discussed about experiments conducted to create a Shallow Parser for Malay-

alam. Sandhi is the main bottleneck to process Malayalam computationally. That problem has been

addressed by creating a hybrid sandhi splitter which identifies the split point at character level using

Naive Bayes classifier and uses hand-crafted character level rules to induce morpho-phonemic changes.

Overall accuracy of the system is 87%. This experiment proved that there exists a character level pattern

for identifying the split point.

When it comes to Parts-Of-Speech Tagger, CRF has been used as the main classifier. Out of various

feature templates used, 3 feature templates tell us more about the nature of the language. When the

feature was only word level contexts, accuracy is 79%, whereas when word internal features like prefix

and suffix information were added, accuracy improved to 91%. In the third main experiment, the feature

was only prefix and suffix information and the accuracy we got is 89%. These experiments validate that

Malayalam has more dependency over word internal features like suffix and prefix information than

word external information like word contexts in deciding the grammatical category of a word.

Chunker for Malayalam has been built using CRF. Results where high when the feature is 2 words

before and after current word along with their POS tags. Experiments showed that reducing or increas-

ing the number of words in context as features reducing the accuracy slightly. Overall accuracy of the

best feature template is 94.33%.

Shallow Parsing is a collective process which includes modules in the order which do sandhi split-

ting, POS tagging and Chunking. Primarily, accuracies of individual modules have been calculated and

the respective overall accuracies for Sandhi splitter, POS tagger and Chunker are 88.46%, 90.45% and

92.98%. Pipe line experiments have been conducted to find the rate of error propagation where the

output of previous module will be the input for next module. In pipeline experiment, respective over-

51

all accuracies for Sandhi splitter, POS tagger and Chunker have been dropped to 88.46%, 79.87% and

71.38%. This experiment showed a drop from overall accuracy of 92% to 71%.

7.1 Future Work

Scope and directions to elaborate this work further are as follows

• Development of a fully statistical Sandhi Splitter.

• Development of algorithms to reduce the error propagation.

• Experiments with Deep Learning techniques for creating, Sandhi Splitter, POS Tagger and Chun-

ker.

• Creation of Full Parser for Malayalam.

52

Appendix

Wx Transliteration Scheme for Malayalam

Given below is the Wx transliteration scheme1 for Malayalam.

1https://en.wikipedia.org/wiki/WXnotation

53

BIS Parts-Of-Speech Tagset for Malayalam

54

55

Chunk Tagset for Malayalam

56

Related Publications

• Devadath V V, Litton J Kurisinkel, Dipti Misra Sharma, Vasudeva Varma, A Sandhi splitter for

Malayalam in ICON , Goa , India, December 2014.

• Devadath V V, Dipti Misra Sharma Significance of an Accurate Sandhi-Splitter in Shallow

Parsing of Dravidian Languages in ACL-SRW, Berlin, Germany, August 2016.

57

Bibliography

[1] StevenP. Abney. Parsing by chunks. In RobertC. Berwick, StevenP. Abney, and Carol Tenny,

editors, Principle-Based Parsing, volume 44 of Studies in Linguistics and Philosophy, pages 257–

278. Springer Netherlands, 1992.

[2] Manish Agarwal, Rahul Goutam, Ashish Jain, Sruthilaya Reddy Kesidi, Prudhvi Kosaraju,

Shashikant Muktyar, Bharat Ambati, and Rajeev Sangal. Comparative analysis of the performance

of crf, hmm and maxent for part-of-speech tagging, chunking and named entity recognition for a

morphologically rich language. Proc. of Pacific Association For Computational Lingustics, pages

3–6, 2011.

[3] R Amritavalli. Separating tense and finiteness: anchoring in dravidian. Natural Language &

Linguistic Theory, 32(1):283–306, 2014.

[4] PJ Antony, Santhanu P Mohan, and KP Soman. Svm based part of speech tagger for malayalam.

In Recent Trends in Information, Telecommunication and Computing (ITC), 2010 International

Conference on, pages 339–341. IEEE, 2010.

[5] Leonardo Badino. Chinese text word-segmentation considering semantic links among sentences.

In INTERSPEECH, 2004.

[6] Akshar Bharati. Anncorra: Annotating corpora guidelines for pos and chunk annotation for indian

languages. 2006.

[7] Akshar Bharati, Vineet Chaitanya, Rajeev Sangal, and KV Ramakrishnamacharyulu. Natural

language processing: a Paninian perspective.

[8] S. Buchholz and W. Daelemans. Complex answers: A case study using a www question answering

system. Nat. Lang. Eng., 7(4):301–323, December 2001.

58

[9] Michael John Collins. A new statistical parser based on bigram lexical dependencies. In Proceed-

ings of the 34th annual meeting on Association for Computational Linguistics, pages 184–191.

Association for Computational Linguistics, 1996.

[10] Walter Daelemans, Sabine Buchholz, and Jorn Veenstra. Memory-based shallow parsing. arXiv

preprint cs/9906005, 1999.

[11] Aniket Dalal, Kumar Nagaraj, Uma Sawant, and Sandeep Shelke. Hindi part-of-speech tagging

and chunking: A maximum entropy approach. 2006.

[12] Aniket Dalal, Kumar Nagaraj, Sandeep Shelke, and Pushpak Bhattacharyya. Building feature rich

pos tagger for morphologically rich languages: Experience in hindi.

[13] Sandipan Dandapat, Sudeshna Sarkar, and Anupam Basu. Automatic part-of-speech tagging for

bengali: An approach for morphologically rich languages in a poor resource scenario. In Proceed-

ings of the 45th Annual Meeting of the ACL on Interactive Poster and Demonstration Sessions,

ACL ’07, pages 221–224, Stroudsburg, PA, USA, 2007. Association for Computational Linguis-

tics.

[14] Divya Das, Radhika K T, Rajeev R R, and Raghu Raj. Hybrid sandhi-splitter for malayalam

using unicode. In In proceedings of National Seminar on Relevance of Malayalam in Information

Technology, 2012.

[15] Hervé Déjean. Learning rules and their exceptions. The Journal of Machine Learning Research,

2:669–693, 2002.

[16] V Dhanalakshmi, G Shivapratap, and Rajendran S Soman Kp. Tamil pos tagging using linear

programming. 2009.

[17] Quang Thang Dinh, Hong Phuong Le, Thi Minh Huyen Nguyen, Cam Tu Nguyen, Mathias Rossig-

nol, Xuan Luong Vu, et al. Word segmentation of vietnamese texts: a comparison of approaches.

In 6th international conference on Language Resources and Evaluation-LREC 2008, 2008.

[18] Braja Gopal Patra1 Khumbar Debbarma Dipankar and Das3 Sivaji Bandyopadhyay. Part of speech

(pos) tagger for kokborok. In 24th International Conference on Computational Linguistics, page

923, 2012.

59

[19] A. Ekbal and S. Bandyopadhyay. Part of speech tagging in bengali using support vector machine.

In Information Technology, 2008. ICIT ’08. International Conference on, pages 106–111, Dec

2008.

[20] Navneet Garg, Vishal Goyal, and Suman Preet. Rule based hindi part of speech tagger. 2012.

[21] Huet Gérard. Lexicon-directed segmentation and tagging of sanskrit. Citeseer.

[22] James Hammerton, Miles Osborne, Susan Armstrong, and Walter Daelemans. Introduction to

special issue on machine learning approaches to shallow parsing. The Journal of Machine Learning

Research, 2:551–558, 2002.

[23] Jisha P Jayan and RR Rajeev. Parts of speech tagger and chunker for malayalam: Statistical

approach. Computer Engineering and Intelligent Systems, 2(2):68–78, 2011.

[24] D. Jurafsky and J.H. Martin. Speech and Language Processing: An Introduction to Natural Lan-

guage Processing, Computational Linguistics, and Speech Recognition. Prentice Hall series in

artificial intelligence. Pearson Prentice Hall, 2009.

[25] Dan Klein, Joseph Smarr, Huy Nguyen, and Christopher D Manning. Named entity recognition

with character-level models. In Proceedings of the seventh conference on Natural language learn-

ing at HLT-NAACL 2003-Volume 4, pages 180–183. Association for Computational Linguistics,

2003.

[26] Dinesh Kumar and Gurpreet Singh Josan. Part of speech taggers for morphologically rich indian

languages: a survey. International Journal of Computer Applications (0975–8887) Volume, pages

1–9, 2010.

[27] Sachin Kumar. Sandhi splitter and analyzer for sanskrit. Master’s thesis, Special Center for San-

skrit Studies, Jawaharlal Nehru University, New Delhi, 2007.

[28] Prathyusha Kuncham, Kovida Nelakuditi, Sneha Nallani, and Radhika Mamidi. Statistical sandhi

splitter for agglutinative languages. In Computational Linguistics and Intelligent Text Processing,

pages 164–172. Springer, 2015.

[29] John Lafferty, Andrew McCallum, and Fernando CN Pereira. Conditional random fields: Proba-

bilistic models for segmenting and labeling sequence data. 2001.

60

[30] K Manju, S Soumya, and Sumam Mary Idicula. Development of a pos tagger for malayalam-

an experience. In Advances in Recent Technologies in Communication and Computing, 2009.

ARTCom’09. International Conference on, pages 709–713. IEEE, 2009.

[31] Thomas McFadden and Sandhya Sundaresan. Finiteness in south asian languages: an introduction.

Natural Language & Linguistic Theory, 32(1):1–27, 2014.

[32] AG Menon. Malayalam. descriptive grammers series. Indo-Iranian Journal, 42(4):382–387, 1999.

[33] Vipul Mittal. Automatic sanskrit segmentizer using finite state transducers. In Proceedings of the

ACL 2010 Student Research Workshop, pages 85–90. Association for Computational Linguistics,

2010.

[34] Antonio Molina and Ferran Pla. Shallow parsing using specialized hmms. J. Mach. Learn. Res.,

2:595–613, March 2002.

[35] FrankHenrik Mller and Tylman Ule. On the nature, annotation and use of shallow parsing struc-

tures. In Lea Cyrus, Hendrik Feddes, Frank Schumacher, and Petra Steiner, editors, Sprache zwis-

chen Theorie und Technologie / Language between Theory and Technology, Sprachwissenschaft,

pages 199–209. Deutscher Universittsverlag, 2003.

[36] Latha R Nair and S David Peter. Development of a rule based learning system for splitting com-

pound words in malayalam language. In Recent Advances in Intelligent Computational Systems

(RAICS), 2011 IEEE, pages 751–755. IEEE, 2011.

[37] Ravi Sankar S Nair. A Grammar Of Malayalam. Languages In India, 2012.

[38] Abhiram Natarajan and Eugene Charniak. Statistical samdhi splitting. 2011.

[39] Irina Nikolaeva. Finiteness: Theoretical and empirical foundations. Oxford University Press,

2007.

[40] Kemal Oflazer, Elvan Göçmen, Elvan Gocmen, and Cem Bozsahin. An outline of turkish mor-

phology. 1994.

[41] Chirag Patel and Karthik Gali. Part-of-speech tagging for gujarati using conditional random fields.

2008.

61

[42] Alan Prince and Paul Smolensky. Optimality Theory: Constraint interaction in generative gram-

mar. John Wiley & Sons, 2008.

[43] Shambhavi B R and Ramakanth Kumar P. Article: Kannada part-of-speech tagging with proba-

bilistic classifiers. International Journal of Computer Applications, 48(17):26–30, June 2012. Full

text available.

[44] Shambhavi.b. R, Ramakanth Kumar P, and Revanth G. Article: A maximum entropy approach

to kannada part of speech tagging. International Journal of Computer Applications, 41(13):9–12,

March 2012. Full text available.

[45] Lawrence R Rabiner and Biing-Hwang Juang. An introduction to hidden markov models. ASSP

Magazine, IEEE, 3(1):4–16, 1986.

[46] RR Rajeev, Jisha P Jayan, and Elizabeth Serly. Tagging malayalam text with parts of speech-tnt

and svm tagger comparison. 2010.

[47] Lance A Ramshaw and Mitchell P Marcus. Text chunking using transformation-based learning.

arXiv preprint cmp-lg/9505040, 1995.

[48] Adwait Ratnaparkhi. Maximum entropy models for natural language ambiguity resolution. PhD

thesis, University of Pennsylvania, 1998.

[49] Erik F Sang. Memory-based shallow parsing. The Journal of Machine Learning Research, 2:559–

594, 2002.

[50] Paul Schachter and Timothy Shopen. Parts-of-speech systems. In Timothy Shopen, editor, Lan-

guage Typology and Syntactic Description, volume 1, pages 1–60. Cambridge University Press,

second edition, 2007. Cambridge Books Online.

[51] Fei Sha and Fernando Pereira. Shallow parsing with conditional random fields. In Proceedings of

the 2003 Conference of the North American Chapter of the Association for Computational Linguis-

tics on Human Language Technology-Volume 1, pages 134–141. Association for Computational

Linguistics, 2003.

62

[52] Manish Shrivastava and Pushpak Bhattacharyya. Hindi pos tagger using naive stemming: har-

nessing morphological information without extensive linguistic knowledge. In Proceedings of the

ICON on Main conference, 2007.

[53] Akshay Singh, Sushma Bendre, and Rajeev Sangal. Hmm based chunker for hindi. In Proceedings

of International Joint Conference on Natural Language Processing. Association for Computational

Linguistics, 2005.

[54] Anil Kumar Singh. A mechanism to provide language-encoding support and an nlp friendly.

[55] Smriti Singh, Om P Damani, and Vaijayanthi M Sarma. Noun group and verb group identification

for hindi. In Proceedingd of COLING. Citeseer, 2012.

[56] Smriti Singh, Kuhoo Gupta, Manish Shrivastava, and Pushpak Bhattacharyya. Morphological

richness offsets resource demand-experiences in constructing a pos tagger for hindi. In Proceed-

ings of the COLING/ACL on Main conference poster sessions, pages 779–786. Association for

Computational Linguistics, 2006.

[57] A.R.R. Varma. Keralapanineeyam 9Th/Ed. DC Books, 2007.

[58] W. Wahlster. Verbmobil: Foundations of Speech-to-Speech Translation. Artificial Intelligence.

Springer Berlin Heidelberg, 2013.

[59] Casey Whitelaw and Jon Patrick. Named entity recognition using a character-based probabilistic

approach. In Proceedings of the seventh conference on Natural language learning at HLT-NAACL

2003-Volume 4, pages 196–199. Association for Computational Linguistics, 2003.

[60] Wikipedia. Languages of india — wikipedia, the free encyclopedia, 2015. [Online; accessed

17-December-2015].

[61] Wikipedia. Part of speech — wikipedia, the free encyclopedia, 2015. [Online; accessed 8-July-

2015].

[62] Tong Zhang, Fred Damerau, and David Johnson. Text chunking based on a generalization of

winnow. The Journal of Machine Learning Research, 2:615–637, 2002.

63

	Introduction
	Motivation
	Syntactic parsing
	Shallow parsing
	Shallow parser for Malayalam
	Summary of contributions
	Chapterization

	Malayalam
	Malayalam
	Characteristics of the language
	Grammatical categories
	Nouns
	Derivative Nouns

	Pronouns
	Postpositions
	Verbs
	Non-Finite Verbs
	Relative Participles
	Adverbial Participles

	Pronominalised Verbs

	Adjectives
	Adverbs
	Conjunctions
	Coordinate Conjunctions
	Subordinate Conjunctions

	Interjections

	Sandhi Splitter
	Introduction
	Sandhi
	Sandhi in Malayalam
	Internal Sandhi
	External sandhi

	Sandhi Splitting
	Importance of Sandhi Splitting
	Sandhi Splitting vs Word Segmentation

	Related works
	Various Approaches
	Rule based Methods
	Look up Dictionary Based
	Root and Suffix Based
	Problems with Rule based method

	Hybrid Method
	Sandhi Rules
	Split point identification
	Data and Results
	Data Set
	Results

	Error Analysis

	Sandhi Splitter using CRF
	Various methods of evaluation
	Method 1
	Method 2
	Method 3

	Conclusion

	Part Of Speech Tagger
	Part of Speech
	Part of Speech Tagging
	Rule based
	Statistical
	POS Taggers for Indian Languages

	Corpus creation
	Tagging Scheme
	Differences in tagging

	Parts-OF-Speech Tagger using Naive Bayes
	Conditional Random Fields
	Experiments
	Experiment Type - 1
	Result
	Error Analysis

	Experiment Type - 2
	Results
	Error Analysis

	Experiment Type - 3
	Results
	Error Analysis

	Overall Results
	Conclusion

	Chunker
	Chunking
	Chunks
	Previous works
	Chunkers for Indian Languages
	Chunking in Malayalam
	Data
	Current Approach
	Experiments
	Results & Error Analysis
	Conclusion

	Shallow Parser
	Shallow Parsing
	Architecture of the Shallow Parser
	Data for Experiments
	Experiments
	Experiment Type - 1
	Results

	Experiment Type - 2
	Method of Evaluation of Pipeline
	Results

	Error Analysis
	Summary

	Conclusions
	Future Work

	Bibliography

