
Exniffer: Learning to Rank Crashes by Assessing the Exploitability from
Memory Dump

Thesis submitted in partial fulfillment
of the requirements for the degree of

MS in Computer Science & Engineering by Research

by

Shubham Tripathi
201407646

shubham.t@research.iiit.ac.in

International Institute of Information Technology
Hyderabad - 500 032, INDIA

March 2018

Copyright c© Shubham Tripathi, March 2018

All Rights Reserved

International Institute of Information Technology
Hyderabad, India

CERTIFICATE

It is certified that the work contained in this thesis, titled “Exniffer: Learning to Rank Crashes by
Assessing the Exploitability from Memory Dump” by Shubham Tripathi, has been carried out under
my supervision and is not submitted elsewhere for a degree.

Date Adviser: Prof. Sanjay Rawat

“Contemplate and reflect upon knowledge, and you will become a benefactor to others.”

To my parents

Acknowledgments

I would like to express my gratitude to my adviser, Dr. Sanjay Rawat. Sanjay sir helped me staying
focused on problems and provided new directions to approach them. Working with him, I have devel-
oped my problem solving skills, learnt about research, about life in general. I would be thankful to him
for all my life, for providing me the guidance on various matters, always motivating and boosting me
with confidence, which really helped me in shaping my life.

I must also thank all my lab-mates who are working or have worked earlier in CSTAR - Vijayendra,
Spandan, Satwik, Charu, Teja, Ishan and Lokesh. I really enjoyed working with them in the lab. I would
like to thank all my friends in IIIT, for making my stay in the campus a memorable one.

In the end, I would like to thank my parents, my wife Jagrati and my brother Utkarsh for their support
and unconditional love and affection.

vi

Abstract

An important component of software reliability is the assurance of certain security guarantees, such
as absence of low-level bugs that may result in code exploitation, for example. A program crash is an
early indicator of possible errors in the program like memory corruption, access violation or division by
zero. In particular, a crash may indicate the presence of safety or security critical errors. A safety-error
crash does not result in any exploitable condition, whereas a security-error crash allows an attacker to
exploit a vulnerability. However, distinguishing one from the other is a non-trivial task. This exacerbates
the problem in cases where we get hundreds of crashes and programmers have to make choices which
crash to patch first!

In this work, we present a technique to identify security critical crashes by applying machine learning
on a set of features derived from core-dump files and runtime information obtained from hardware
assisted monitoring such as the last branch record (LBR) register. We implement the proposed technique
in a prototype called Exniffer. Our empirical results, obtained by experimenting Exniffer on several
crashes on real-world applications show that proposed technique is able to classify a given crash as
exploitable or not-exploitable with high accuracy.

vii

Contents

Chapter Page

1 Introduction . 1
1.1 Motivation . 1
1.2 Problem Statement . 4
1.3 Contribution . 5
1.4 Outline . 5

2 Background . 6
2.1 Program Crash . 6

2.1.1 Memory corruption . 7
2.2 Core-dump . 8
2.3 Last Branch Record (LBR) . 10
2.4 Dynamic Taint Analysis . 10
2.5 Support Vector Machine . 12

2.5.1 Effect of parameters C and γ on model selection 14

3 Related Work . 15

4 Proposed Technique . 18
4.1 Feature Design . 18

4.1.1 Static Features . 18
4.1.2 Dynamic Features . 21

4.2 Exploitability Prediction . 24
4.2.1 Dataset and Labelling . 25
4.2.2 Learning Strategy . 26
4.2.3 Crash Prioritization Approach . 27
4.2.4 Feature Ranking Approach . 27

5 Evaluation . 29
5.1 Implementation . 29
5.2 Results and Discussion . 29

5.2.1 Parameter tuning and model selection . 29
5.2.2 Exploitability Prediction . 31
5.2.3 Crash Prioritization . 33
5.2.4 Feature Ranking . 36
5.2.5 Comparison with !exploitable . 37

viii

CONTENTS ix

6 Conclusion and Future Work . 39

Bibliography . 41

List of Figures

Figure Page

1.1 A typical crash report from Mozilla Firefox . 1
1.2 Windows OS crash: Blue screen of death . 2

2.1 An ELF file has two views: the program header shows the segments used at run time,
whereas the section header lists the set of sections of the binary. 9

2.2 ELF header: ELF file information . 9
2.3 LBR: Last Branch Records example . 10
2.4 Dynamic Taintflow Analysis: Taint Propagation . 12
2.5 Soft margin Support Vector Machine with Kernel function 13

4.1 Valid memory addresses: Core file contents displayed using GDB shows the address
range of loaded sections at the time of crash . 20

4.2 Segment Permissions: Readelf Linux utility shows the permissions available on each
segment (See column Flg, R:Read, W:Write, E:Execute) 21

4.3 Exploitability prediction process . 24

5.1 ROC curve on evaluation set with selected classifier. 32

x

List of Tables

Table Page

4.1 List of all features . 22

5.1 Cross-Validation Scores for SVM models . 30
5.2 Exploitability Prediction Accuracy . 31
5.3 Confusion Matrix . 31
5.4 Average time statistics for exploitability prediction tasks 33
5.5 Top 10 features based on RFE . 36
5.6 Confusion matrix for !exploitable . 38
5.7 Exploitability Prediction Accuracy . 38

xi

Chapter 1

Introduction

1.1 Motivation

During testing (or during the normal usage), a program crash indicates the presence of possible errors
or bugs in the program. A program can crash because of many reasons like access violation, division
by zero, unhandled exception etc. Generally, the application developers request for more information
such as stack trace, memory dump etc. to diagnose and fix the problem. Figure 1.1 shows a typical
scenario of such a crash. Kernel crashes are more serious and leads to unresponsive computer which
has to be generally restarted. In windows this is known as the famous Blue screen of death as shown in
Figure 1.2. Notice in the figure, the crash probably happened because of a page fault at certain memory
addresses highlighted in the technical information. Also, after this exception the Windows OS started
collecting data in the form of a crash dump for further analysis.

Figure 1.1: A typical crash report from Mozilla Firefox

1

Figure 1.2: Windows OS crash: Blue screen of death

A program crash such as those shown in Figure 1.1 and 1.2 can be of two types, safety and security.
A safety crash does not result in any exploitable condition, whereas a security crash allows an attacker
to exploit a vulnerability such as buffer overflow. Listing 1.1 and 1.2 give examples of exploitable and
non-exploitable crashes respectively.

Listing 1.1: Exploitable Example

1 i n t main () {
2 char name [3 0] , ch ;
3 i n t i =0 ;
4 p r i n t f (” E n t e r name : ”) ;
5 whi le (ch != ’\n ’) / / t e r m i n a t e s i f u s e r h i t e n t e r
6 {
7 ch= g e t c h a r () ;
8 p r i n t f (”%d %c\n ” , i , ch) ;
9 name [i]= ch ; / / c r a s h !

10 i ++;
11 }
12 p r i n t f (”\n ”) ;
13 name [i]= ’ \0 ’ ; / / i n s e r t i n g n u l l c h a r a c t e r a t end

2

14 p r i n t f (”Name : %s ” , name) ;
15 re turn 0 ;
16 }

Listing 1 shows a classic buffer overflow example that crashes at line 9. The code keeps accepting
input characters in a buffer until the user hits enter. However, since the buffer has fixed size of 30
characters, a string with length larger than 30 will result in overwriting of the next set of addresses
which is outside the memory allocated to buffer name. If the size of input string is large enough, it will
lead to corruption of memory address containing the return address of the last function on the stack.
Finally, when the current function returns, the corrupt value in return address leads to the segmentation
fault in this program. Notice here that an attacker can provide a crafted input string that leads to a buffer
overflow of the return address such that the control flow redirects back to memory containing buffer
name. This crafted input stored in the buffer can contain instructions for shell code for example and
therefore leads to its exploitation.

Listing 1.2: Non-Exploitable Example

1 void main () {
2 i n t a [4] , i ;
3 s c a n f (”%d ” ,&a) ;
4 a [i]= a [0] + a [1] + a [2] + a [3] ; / / c r a s h !
5 p r i n t f (”%d ” , a) ;
6 }

Listing 2 is an example of non-exploitable crash. Segmentation fault occurs at line 4 as a result of
write access violation due to uninitialized variable i possibly containing some garbage value. Operation
a[i] in line 4 tries to dereference the memory location (a+i) which is invalid, thus resulting in a seg-
mentation fault. Notice here that there is no way an attacker can possibly control the value of variable i,
which makes this crash non-exploitable.

From practical usage point of view, answering the question on exploitability has a very important
role to play. If we look at any big product bug reporting site [3], we will notice that on an average,
there are hundreds of bugs in the queue to be patched with the same limited resources to work on i.e.
human developers. Under such conditions, if there is a way to prioritize the patch development, it can
help the company to patch most important bugs fast. One of the ways to measure the importance of the
patch is to find out if ”it is possible to exploit the crash for further security breach”. If we can assert the
possibility of exploitation of a crash, it makes sense to immediately release a patch for it.

!exploitable [9] is one such tool that predicts exploitability of a crash by analysing crash state of a
program within a debugger using specific rules and relates them using a rule-based engine. !exploitable
however fails to generalize to different crash scenarios and conservatively assumes data available at

3

crash site as controlled by the attacker, which may not always be the case, and this leads to many false
alarms. For example, !exploitable incorrectly predicts Listing 1.2 as exploitable.

1.2 Problem Statement

A core-dump provides the memory snapshot of the program at the time of crash and is used tradi-
tionally by the developers to determine root-cause and implications of a crash. However, information
available from just core-dump may not be sufficient always for crash analysis and tools such as Crashfil-
ter [12], ExpTracer [28] and Bitblaze [23] employ static and dynamic analysis to enrich the information
available from a core-dump for a more accurate analysis. But such an analysis is really slow for complex
programs and are not suited for real-time exploitability prediction such as in production environments.
In addition, even though offline analysis can be performed by reproducing the crash, the conditions of
crash may vary due to a change of environment. We would like to capture the crash information in the
same environment in which the crash occurred.

Hardware debugging extensions available in recent commodity processors have been used to improve
runtime for root-cause analysis in previous studies [17] [18]. For example, a particular extension of Intel
i7 processor i.e. Last Branch Record (LBR) saves a set of few (generally 16) most recent branches and
has been used to trace program flows and even determine code coverage. In this research work, we
extract static features from core-dump and leverage LBR for dynamic features to enrich our feature set
which makes our approach suitable for production systems.

Exploitability prediction of large number of crashes manually is a tedious task that requires effort,
skill and resources which eventually costs money. Moreover, this process cannot be ignored as it can
lead to serious ramifications for the organization and its customers. So, we propose Exniffer, an efficient
and automated machine learning based tool for large scale exploitability prediction of crashes. Given
sufficient samples (crashes) of the two classes i.e. exploitable and non-exploitable, Exniffer learns a
hypothesis which can be used to classify an unseen sample. We use Support Vector Machine (SVM) for
exploitability prediction. We utilize publically available dataset i.e. VDiscovery, LAVA and some online
freely available for development, validation and evaluation of the hypothesis. We extract static features
from core-dump and leverage LBR for dynamic features to enrich our feature set which makes Exniffer
suitable for production systems. We only assume availability of a binary executable, a crashing input, a
core-dump and the LBR records for exploitability prediction. Also, for this research work, we consider
memory corruption vulnerabilities in x86 architecture arising from C and C++ program executables only.

When we predict explotability for large number of crashes, there arises a need to assign priority to
each crash that estimates how severe the crash is with respect to exploitability. This further supports the
developer in fixing most relevant crashes first. So, we extend our exploitability prediction algorithm to

4

support crash prioritization also. We also report the most relevant features learnt by SVM hypothesis
over the development dataset that contribute to exploitability prediction.

In this thesis, we predict exploitability of a crash in software application using machine learning
through the use of core-dump, binary executable in C/C++, crashing input and hardware branch tracing
facilities. We also prioritize crashes in decreasing order of exploitability to facilitate bug fixing.

1.3 Contribution

Specifically, we make following contributions:

1. Design of lightweight static (core-dump) and dynamic (LBR) features that enables online analysis
of production-run application crashes. (First of its kind application of LBR to complement static
features).

2. Exploitability prediction and crash prioritization using machine learning.

3. Feature ranking to provide insight into the causes of crash and thereby reasoning over exploitabil-
ity.

1.4 Outline

The thesis is oulined as follows. In Chapter 4, we propose technique to solve the problem and
describe terminology, feature design and exploitability prediction algorithm. We then evaluate, discuss
and compare our prototype in Chapter 5. Next we list the related work done in Chapter 3. Finally we
conclude in Chapter 6 and also provide future directions for this research work.

5

Chapter 2

Background

2.1 Program Crash

A program crash occurs when a computer program i.e. a software application or an operating system
stops functioning properly and exits. The program generally become unresponsive after the crash and
may even result in fatal system error (see Figure 1.1 and 1.2). If the application performs an operation
that is not allowed by the operating system or hardware, the system raises an exception in the form of a
signal or a fault in the application. A fault is a failure condition that can result in the program crash if
the exception is not handled explicitly.

There are many types of exceptions such as segmentation fault, program abort, floating point error
and illegal instruction etc. There are wide variety of causes of these exceptions. Memory corruption
bugs are one of main reasons for program crash. In addition, some other causes include division by zero,
operation on undefined values (for e.g. NaN), unhandled exceptions, malformed or unaligned instruc-
tions, invalid arguments to system calls, illegal I/O operation on hardware devices etc. Applications
generally respond to the exceptions by dumping core files which consist of details of working memory
at the time of crash (Section 2.2). These core-dump files can be used in conjunction with debuggers to
diagnose the crash. From the point of view of exploitability, a program crash can be seen as a denial of
service condition which may or may not be triggered by an attacker. If the attacker’s input can reach the
crash site, then attacker can influence the crash and may even exploit it. We use Dynamic Taint Anal-
ysis (Section 2.4) to determine exploitability of a crash by tracking the flow of input data through the
program while it is executed. In the next section, we will discuss the different types memory corruption
bugs that generally result in program crash.

6

2.1.1 Memory corruption

Memory corruption occurs if a program accesses memory in an unintended manner. This can result
in a crash/exception if the memory access is illegal. However, many unintended memory operations can
be legal which may not result in a crash. These kinds of corruption may change the state of the pro-
gram so that it behaves unpredictably and possibly generates an exception at a later point in time. For
example, reading an uninitialized variable is an unintended legal memory access because it may result
in unpredictable behavior of the program depending on what the variable is used for. Dereferencing an
uninitialized pointer, such as NULL pointer, will cause an exception immediately. But if the uninitial-
ized pointer points to a unintended but valid memory location the program may not crash immediately
and may lead of random behaviour at a later point in the program. Incorrect management of dynamically
allocated memory can lead to another kind of memory corruption bug known as use-after-free. If a data
structure or an object, pointed to by a pointer, is freed and that pointer is used again later, it can point to
whatever has been allocated on the same address. This is known as a use-after-free bug. If the pointer
is freed again, the program will try to free something that should not be freed, known as a double-free
bug.

Memory corruption can also be caused by overwriting buffer memory which is known as buffer over-
flow. If there is insufficient boundary checking on the pointer values or indices when accessing buffers,
memory outside the buffer could be accessed. If this memory is read, the situation is similar to reading
uninitialized data. On the other hand, if data outside the buffer is written to, it may possibly overwrite
other data. Since data buffers normally lie on the stack or the heap, a buffer overflow may overwrite
important internal data structures as well as program variables. This can result in an exception at some
point later depending on when the corrupted data is used. It can also result in immediate crash if an
invalid memory or illegal memory is accessed while reading or writing buffer.

Type conversion can cause memory corruption if they are not accounted for in a program. For
example a small negative integer will be interpreted as a huge positive number if it is treated as an
unsigned integer. Integer overflow can cause the addition of two large numbers to result in a small
number. These kinds of programming issues can lead to buffer overflows, for example by the incorrect
calculation of a buffer length. Concurrency can also cause memory corruption. If memory is shared
between different threads, there can be race conditions causing unintended use of memory. This can
make one thread corrupt the variables of another thread. Format string bugs are caused by incorrect use
of the C language format string functions like printf. A malicious user may use the format tokens such
as %x and %n, to print data from the call stack or possibly other locations in memory.

7

2.2 Core-dump

A core-dump or crash-dump consists of the recorded state of the working memory of a computer pro-
gram at a specific time, generally when the program has crashed or otherwise terminated abnormally.
The core-dump also contains information about processor registers, such as program counter and stack
pointer. It also contains memory management information such as information on memory segment
size, addresses and permissions. A crash can be dumped either as a kernel dump that contains memory
state of kernel or minidump that has only user level information or a full dump that contains dump of
complete memory. Core-dump format is generally Executable and Linkable Format (ELF) for Linux
and Portable Executable (PE) in case of Windows. In this project, we work with x86 ELF minidumps.

Figure 2.1 shows the two views of same x86 ELF executable: Executable view and Linkable view.
Operating system uses segment information available from the executable view (program headers) to
load the binary into memory and execute it. Linkable view (section header) on the other hand organize
the binary into logical areas (sections) to communicate information between the compiler and linker.
From a unified perspective, each segment consists of at least one section in an ELF file as is also evident
from Figure 2.1.

Figure 2.2 shows header information in a typical ELF core file which consists of details such as ELF
magic bytes, architecture, type of ELF file, entry point of binary, start of program and section header
etc. If an ELF file is compiled with debugging option, it consists of a symbol table that references a
string table consisting of variable and function names suitable for debugging purpose. A stripped ELF
is not compiled with debugging option and does not contain any such information. Our approach does
not assume or utilize any such debugging information to predict exploitability.

8

Figure 2.1: An ELF file has two views: the program header shows the segments used at run time,
whereas the section header lists the set of sections of the binary.

Figure 2.2: ELF header: ELF file information

9

2.3 Last Branch Record (LBR)

Modern intel processors (post - Pentium 4) provide hardware support for debugging facilities for
branch tracing as part of performance monitoring units in the form of Last Branch Record (LBR) and
Branch Trace Store (BTS). LBR stores last few branches in the form of source and destination ad-
dresses using a circular ring of hardware registers. The number of records that LBR can store vary with
the model of processor and are theore called Model Specific Registers (MSR) - it goes from 4 entries in
Pentium 4 and Intel Xeon processors, to 8 in Pentium M processors, and to 16 in Nehalem processors
[4]. LBR can also be configured to record different types of branch instructions, for example conditional
branches, unconditional jumps, calls, returns etc. When enabled, LBR keeps a record of last N branch
instructions and incurs almost zero overhead [17]. BTS on the other hand logs all the branch records in
memory and as a result incurs more overhead than LBR. For our purpose, we utilize LBR to trace 16
branch instructions consisting of source and destination addresses. Figure 2.3 shows last 16 source and
destination addresses stored in LBR along with the branch instruction.

Figure 2.3: LBR: Last Branch Records example

2.4 Dynamic Taint Analysis

Exploitability prediction using machine learning requires a dataset for training, validation and test-
ing. Each sample in the dataset has to be labelled with one of the classes considered for machine
learning hypothesis. For example, in our case, we consider exploitability prediction as a binary classifi-
cation problem, so we have two classes i.e. Exploitable and Non-Exploitable. Now, to label a crash in
one of the two classes, we need mechanisms to determine its exploitability. We utilize Dynamic Taint
Analysis (DTA) as one such mechanism to determine exploitability of a crash for the purpose of dataset

10

labelling.

DTA is a form of data flow analysis to track data as it flows through a program while it is executed.
DTA works at binary level and can perform taint analysis for dynamic libraries with exact runtime
information such as register and memory values. This is in contrast to Static Taint Analysis (STA)
which performs execution symbolically and precise runtime information is unavailable. This makes
STA more suited to full coverage analysis. The tracked tainted information in DTA can be bit or byte
level. Bit-level taint analysis is more precise but slower than byte-level analysis. The steps for DTA are
as follows:

1. Taint Initialization: The input to the program given by user or an untrustworthy source is marked
as tainted. Actually, the memory addresses containing the tainted input is essential to perform
DTA and stored in a buffer or a file. Generally, system calls such as read are hooked and memory
locations where the input data is stored is captured and tracked.

2. Taint Propagation: Propagation of taint is performed in three steps. First, a memory address
containing the tainted data is read using a load instruction such as mov [%eax],%ebx. The
register in which the tainted data is read is now marked as tainted i.e. in the above example,
%ebx is marked as tainted. So, there are two sets of taint information stored: memory addresses of
tainted data and registers into which this tainted data is loaded. Second, memory write instructions
such as mov %eax,[%esp], results in tainting of memory address if the register which is to be
written, is tainted. In the above example, if %eax is tainted, then memory address of the operand
[%esp] will now contain tainted data. Third, boolean and arithmetic instructions such as mul
%eax, %ecx also result in propagation of taint information. In this example, if %ecx is tainted
and %eax is not tainted, then after the operation %eax will be marked as tainted.

Figure 2.4 describes an example of the flow of tainted information. Data from tainted memory lo-
cation is moved to register %xmm2 with a memory read instruction. %xmm2 is marked as tainted. The
taint then propagates to %eax when the data in %xmm2 is moved to %eax. With a memory write, the
tainted data in %eax is now written to a memory location. This memory location is now stored in a
buffer to keep track of the tainted data it holds. The process of taint propagation now repeats when a
memory read instruction moves the tainted data to %esi.

In the context of program crash analysis, DTA can be used to decide if the corrupted memory gen-
erating a crash originates from user input or not. For example, if a program crashed with segmentation
fault at a memory read instruction, and if the memory address read contains tainted data, then the at-
tacker will be able to control the register value and may possibly exploit the bug. This is a basic factor to
decide the exploitability of a crash. DTA although promising, involves runtime and memory overhead
and its usage in production systems for exploitability analysis can be a costly affair. Therefore, in this
work, we utilize DTA only for the labelling of the dataset and not for crash analysis.

11

Figure 2.4: Dynamic Taintflow Analysis: Taint Propagation

2.5 Support Vector Machine

We pose the exploitability prediction as a binary classification problem with two classes. The fea-
tures for each crash are extracted from core-dump and LBR. A simplified approach involves building
a linear hyperplane that separates the two classes. But it is rare for a real-world dataset to be linearly
separable. If however, the dataset is mapped to an appropriate higher dimensional space, it can become
linearly separable in that feature space. Although a promising insight, there are two major issues. First,
there is an explosion in the number of dimensions of higher dimension feature space. For e.g. a pth

degree polynomial discriminant function in the original space Rm requires a feature space of O(mp).
This results in huge computational cost for both learning and final operation of classifier. And secondly,
since we are learning O(mp) rather than O(m) parameters, we may need much larger number of exam-
ples for achieving proper generalization.

Fortunately, Support Vector Machine (SVM) offers an elegant solution to both the issues. SVM
learns an optimal separating hyperplane that maximizes separation between two classes. It can also
learn non-linear discriminant functions by effectively mapping original input space to high-dimensional
feature space. Furthermore, by using kernel functions, we never explicitly compute the mapping of
training or testing feature vectors.

Following section formally describe SVM hypothesis.

Let Xi ∈ Rm represent a sample in n training examples, yi ∈ {−1,+1} be the label of each sample,
φ : Rm → < be the mapping from input vector space Rm to feature space < and 〈W ∈ <, b ∈ R〉 be

12

Figure 2.5: Soft margin Support Vector Machine with Kernel function

the maximum margin optimal hyperplane, then the separability constraints for the an SVM are given by,

yi(W
Tφ(Xi) + b) ≥ 1− ξi (2.1)

ξi ≥ 0 (2.2)

where ξi ∈ R are the slack variables corresponding to each training sample and measure the error with
respect to the optimal hyperplane. This results in a soft-margin SVM (Figure 2.5) with optimization
objective as minimization of,

1

2
W TW + C

n∑
i=1

ξi (2.3)

subject to constraints given in (2.1) and (2.2) where i=1. . . n and C is the user defined regularization
parameter. It is possible to prove [Vapnik 1998] that optimum hyperplane (W ∗, b∗) is given by,

W ∗ =

n∑
i=1

µ∗i yiφ(Xi) (2.4)

b∗ = yj −W ∗Tφ(Xj) , j such that 0 < µj < C (2.5)

here µi’s are positive real numbers that maximize the dual of the optimization objective,

n∑
i=1

µi −
1

2

n∑
i,j=1

µiµjyiyjφ(Xi)
Tφ(Xj) (2.6)

13

subject to,

n∑
i=1

µiyi = 0 and 0 ≤ µi ≤ C (2.7)

The class of a test sample X can now be predicted as,

sign(W ∗Tφ(X) + b∗) (2.8)

sign(
n∑
i=1

µ∗i yiφ(Xi)
Tφ(X) + b∗) (2.9)

From Eq.2.9, notice that there is only a subset of training samples Xi’s with µ∗i > 0 that are used for
prediction. These samples are known as support vectors.

φ maps X to some higher dimensional space < which has to be computed. However, it turns out
that if there is a function K(Xi, Xj) = φ(Xi)

Tφ(Xj), it is possible for SVM to learn and also use
maximum margin hyperplane efficiently in < without computing the mapping explicitly [Mercer Theo-
rem]. K(Xi, Xj) is known as the kernel function. For our purpose, we have created models using SVM
with a linear kernel and with a radial basis function (rbf) kernel. A linear kernel is a special kernel
where K(Xi, Xj) = XT

i Xj while an rbf kernel is gaussian function K(Xi, Xj) = exp(−γ|Xi−Xj |2)
where γ > 0 is a user-specified parameter that is inversely proportional to the variance of the gaussian
function.

2.5.1 Effect of parameters C and γ on model selection

The regularization parameter C is the weight of sum of errors made by the maximum margin hyper-
plane 〈W, b〉. If C is too high, then for expression 2.3 to be minimized, the term

∑n
i=1 ξi has to very

small, which means that the selected model makes little or no errors in classfication and hence overfits
the data. On the other hand, if C is very small, then ξi’s can take any value and W underfits the data
making a lot of errors.

γ, which is a parameter for rbf kernel, controls the area of influence of samples selected by model
as support vectors. A high γ signifies a low variance i.e. the area of influence of support vector only
includes support vector itself which results in overfitting. When γ is too small, then the influence of
support vector is large and the model will not be able to capture the complexity of the data.
Therefore, C and γ need to be set in such a way so as to prevent both under and over-fitting.

14

Chapter 3

Related Work

!exploitable and its adaptations for other operating systems [13] performs exploitability analysis
of crashes. The tool first creates hashes to determine the uniqueness of a crash and then assigns an
exploitability rating to the crash: Exploitable, Probably Exploitable, Probably Not Exploitable, or Un-
known. The tool reads the state of the crash within Windbg after the crash occurs and uses a rule based
engine to determine the exploitability rating. Since exploitable crashes can manifest in a variety of ways,
capturing all the rules is not feasible task and the rule-set has to be constantly evolved. In addition, the
tool conservatively assumes all the input available at the point of crash point as tainted which results in
reduced accuracy.

Crashfilter [12], another tool that performs program tracing from crash point to exploitable point
(branch instruction) by using static taint analysis for exhaustive exploitable point search. However,
similar to !exploitable, it assumes that inputs available at crash point are all tainted and analyze ARM
executables only. In addition, static taint analysis also has large runtime overhead.

VDiscover [14] shares the same goal as Exniffer, in extracting lightweight static and dynamic fea-
tures and predicting exploitability using a machine learning model. Dynamic features are extracted as
sequence of calls to C standard library. Multiple such sequences are extracted by incorporating fuzzing
to generate malformed inputs. We found that to correctly predict on a testcase, VDiscover requires long
sequences of dynamic features which may not always be the case. VDiscover has a low false positive
rate, however there is scope of improvement with respect to true positive rate.

ExploitMeter [21] integrates fuzzing for testcase generation with machine learning for quantifying
software exploitability. However, they use !exploitable to label their dataset and as we have seen in
comparison section 5.2.5, !exploitable results in a lower accuracy. This implies that if Exniffer performs
better than !exploitable, it will perform better than ExploitMeter on a given dataset. ExploitMeter uses
mostly static features from binary executables extracted using hexdump, objdump and readelf utilities.
The authors clearly observed weak predictive power of these features and infact VDiscover also indi-

15

cated ineffectiveness of similar static features.

Kim et. al. [20] use machine learning for the purpose of crashes prioritization. The authors focus
on determining top few crashes that account for large majority of crash reports, although they do not
consider exploitability of crashes in their work.

CREDAL [29] aims to localize memory corruption vulnerabilities using information from core dump
such as stack traces and combines it with source code to give more insight to developer by highlighting
code fragments that correspond to data corruption. We do not use source code for our analysis and our
idea is to provide a fast screening of large number of crashes to prioritize debugging efforts.

Several systems are developed that perform automated root cause analysis and exploit generation
such as MAYHEM [19] and Lai et al. [16] performs automatic exploit generation with concolic execu-
tion while Heelan et al. [15] use taint-flow analysis given crashing input and binary executable. Miller et
al. [23] analyse crashes with whole system taint-tracking and manual analysis to determine accurately
if the crash is indeed exploitable. It is true that if one is able to generate an exploit for a crash, it is
definitely exploitable. However, since the runtime to generate execution traces (in taint-flow analysis
for example), to generate exploit is very large, we propose that these approaches be used for complete
analysis of only most severe crashes such as those predicted exploitable by Exniffer.

In their paper on predicting top crashes, Park et al. [20] hypothesized that only a small number of top
crashes account for majority of crash reports. They extracted features from relevant methods and stack
traces related to history, complexity metrics and social network analysis to train a machine learning
model for predicting top crashes. Although their work provides a prioritization of crashes, they do not
look into exploitability prediction.

Tang et al. [30] use reverse taint analysis from instruction pointer to user influenced inputs using
shadow memory to identify the root cause of the vulnerability leading to the crash. They also generate
exploit for confirming exploitability of a crash using symbolic execution. As we discussed, such an
approach can help perform a detailed exploitability analysis of few chosen crashes. RETracer [10] also
performs binary-level backward taint analysis, but instead of using shadow memory, they reconstruct
program semantics using core dump. However, RETracer does not deal with exploitability of crash at
this point.

Directed greybox fuzzing [25] uses a simulated annealing based approach to patch testing, crash re-
production, static analysis report verification and information flow detection. This approach is suitable
for offline analysis and requires source code to perform compile-time instrumentation.

16

DeepLog [26] performs anomaly detection and diagnosis from system logs using deep neural net-
work to learn log patterns from normal execution and detect anomalies when log patterns deviate.
DeepLog can detect crashes real-time in production, but do not analyze or predict exploitability. For
e.g. for either exploitable or non-exploitable crash, DeepLog will report a segmentation fault.

Failure Sketching [18] is a technique for Automated Root Cause Diagnosis of In-Production Fail-
ures. The system relies on hardware watchpoints and a new hardware feature for extracting control-flow
traces using Intel Processor Trace (Intel PT) with low overhead of 3.74%. Failure Sketching uses source
code since the objective is to help developer determine root cause.

Leveraging the Short-Term Memory of Hardware to Diagnose Production-Run Software Failures
[17] transforms source code to toggle LBR at specific points in program to enable profiling of execution
at runtime. Developers can use the LBR record collected at a failure site to reconstruct the control
flow and interleaving right before the failure. This approach argues that short term memory of program
execution is often sufficient for failure diagnosis.

17

Chapter 4

Proposed Technique

4.1 Feature Design

Machine learning requires crashes to be represented in features vectors. These features have to
be designed and then extracted from core-dump and LBR for each crash. The design of features must
ensure efficient extraction, address space invariance and relevance to memory corruption vulnerabilities.
In particular, we extract two types of features, static and dynamic from core-dump and LBR respectively.
Table 4.1 lists all the features that describe a feature vector.

4.1.1 Static Features

1. Stack Unwinding: Unwinding of stack, traces back functions (activation records) that were active
at the time of crash. This is popularly known as backtrace in debugging terminology. In x86
architecture, the base pointer register is used to trace back currently active activation records
known as frames. The base pointer register points to the location in memory that contains the
address of base pointer of the last frame or the caller of current frame. If we use this to trace back
each frame’s base pointer, we would eventually reach the first frame which will have the address
0x00000000. We then stop unwinding the frames any further.
Buffer overflow in the current frame may lead to corruption of the memory location pointed to by
the base pointer, which results in incorrect or unsuccessful unwinding of frames. So, we will use
a boolean feature representing corruption of stack.

2. Special Registers: The x86 architecture provides special registers in the form of instruction
pointer, base pointer and stack pointer that keep track of the next instruction to be executed,
address of the last frame and top of stack respectively. We are interested to know if these registers
point to valid memory locations or not. Valid memory locations are those segments that are al-
located for the process by the operating system and some of these segments which include stack
and heap may keep changing as the program executes. If any memory is accessed outside of these
allocated segments, it will result in a crash known as segmentation fault. In addition to the legal

18

segments which represent the allocated memory, the validity of a segment is also defined by its
permission flags i.e. read, write and execute.
So, an instruction pointer register must always point to the code segment which has the read and
execute permissions and never to a segment with read, write and execute permissions. Also, seg-
ments containing stack must have only read and write permissions and must not have execute
permission. An executable stack has been a common cause of shell code injection attacks. So, we
design features to capture information related to special registers and memory segmentation.
Figure 4.1 shows the typical section information available in a core-dump file extracted using
GDB [2]. Note that the sections are synonymous with segments in this case, however, in gen-
eral there can be multiple sections in a segment. The first and second columns provide the
valid address range for each segment at the time of crash. For example, [0xbffdf000,
0xc0000000) is the address range of the last segment which is generally part of stack. In
the Listing 4.1, the program crashed at instruction:

Listing 4.1: Crashing instruction at Invalid address

(gdb) x / i $ e i p
=> 0 x8048505 <main +57>: mov %al ,(% edx)
(gdb) i n f o r e g i s t e r s $edx
edx 0 xc0000000 −1073741824

Notice that at the crashing instruction, the contents of register al were being moved to the mem-
ory address pointed to by edx register which was 0xc0000000. But since, this is an out of
bounds of the last section as shown in figure 4.1, the program crashes as a result of segmentation
fault.
We also check the permissions of segment pointed to by eip register, which can be extracted from
Readelf command line utility as shown in figure 4.2. eip points to 0x8048505 that lies in the
segment starting at virtual address 0x08048000. Notice that this segment has Read and Execute
permissions as indicated by R and E respectively in the Flg column which is generally associated
with code section. So, using this information we formulate binary features that capture validity of
address and segment permissions of addresses contained in special registers and memory operand
(see list of features in table 4.1).

3. Crashing Instruction: The instruction at which the program has crashed contains important infor-
mation regarding the type of access violation. A memory read instruction represents read access
violation while a memory write instruction represents write access violation. We include the type
of access violation in the feature set. We also check whether the operands are contained within
memory segments allocated at the time of crash. In addition, whether the type of instruction is
branch or not is important to capture if there was a control flow change at the time of crash.

19

Figure 4.1: Valid memory addresses: Core file contents displayed using GDB shows the address range
of loaded sections at the time of crash

We also include the number of operands and type of each operand (memory, register, immediate)
in the feature list so that the learning algorithm can distinguish the type of instructions. For
example, a program crashed due to division by zero at div ecx. Suppose, another program
crashed at mov eax,[ecx]. In both cases, ecx register contains zero but the crash in the first
case is because of division by zero and in the second case because of illegal memory access. This
scenario can be differentiated using a feature that checks if the crashing instruction contains an
operand that accesses memory.

4. Type of Signal: We extract features from core-dump that include information on crashing signal
such as benign, malformed instruction, access violation, abort and floating point exception. Mal-
formed instruction signal is sent to the process when it attempts to execute an illegal, malformed,
unknown, or privileged instruction. The segmentation fault signal is sent to a process when it
makes an invalid virtual memory reference. The abort signal is usually initiated by the process it-
self when it calls abort() function in the C library for example due to incorrect memory allocation.
The floating point exception signal is sent to a process when it executes an erroneous arithmetic
operation, such as division by zero. The rest of the signals are considered as benign.

20

Figure 4.2: Segment Permissions: Readelf Linux utility shows the permissions available on each seg-
ment (See column Flg, R:Read, W:Write, E:Execute)

4.1.2 Dynamic Features

Hardware features such as LBR (Last Branch Record) provided by modern commodity processors
incur negligible overhead and are used in root cause and security analysis. LBRA/LCRA [17] have
also argued that for failure diagnosis, short-term program execution memory is sufficient. Using this
information, we extract dynamic features based on LBR which are not only efficient but are also address
invariant. Specifically, we extract the following features:

1. Type of Branch instruction executed last: Static features already capture if the program crashed at
a branch instruction, which can lead to control flow redirection. This feature provides a context
before the crash if the crashing instruction is not a branch instruction. The branch instruction
considered are conditional or unconditional jump, function call and return.

2. Occurence of crash in a loop: Vulnerabilities such as stack and heap overflow have a high chance
of occurring inside a loop where memory is sequencially written [24]. We find patterns within
the branch records to look for a repeating address within the context of the last function. If the
instruction is conditional or unconditional jump and destination address is smaller than the source
address, then there is a possible repetition of instruction and can be considered as a loop.

21

3. Number of call-return pairs: This feature represents how frequently the functions are called and
returned within 16 branch records. This feature captures the recursive context before the crash.

4. Branch variation: This feature is computed by variance of difference of source and destination
address of each branch instruction available in LBR. This represents the variation of branch in-
structions. For example, a dynamic library which is loaded between stack and heap region has a
large virtual address. When the user code in the text section with relatively small virtual address
calls such a library function, the difference between the source and destination addresses is very
large which contributes to a large variance. This feature captures the spread of control flow over
the virtual memory space of the program. Since this is a positive real number feature with a large
value, we take the absolute value of the logarithm of the variance.

Table 4.1: List of all features

Index Description

Static Features based on Core dump
Stack Trace

1. Backtrace is Corrupt
Special Registers

2. EIP is in Allocated memory
3. EBP is in Allocated memory
4. ESP is in Allocated memory

Instruction and Operand
5. Current instruction is available
6. EIP Segment is Readable
7. EIP Segment is Writable
8. EIP Segment is Executable
9. EIP Segment is Write ⊕ Execute
10. Memory operand is in Allocated memory
11. Memory operand is Source
12. Memory operand is Dest
13. Memory operand is Null
14. #Operands = 0
15. #Operands = 1
16. #Operands = 2
17. #Operands = 3+
18. Operand is memory
19. Operand is immediate

22

20. Operand is register
21. Operand is real number
22. Is Branch Instruction

Eflags Register
23. Carry Flag
24. Parity flag
25. Auxiliary Carry Flag
26. Zero Flag
27. Sign Flag
28. Trap Flag
29. Interrupt Enable Flag
30. Direction Flag
31. Overflow Flag
32. Input/Output privilege level flags
33. Nested Task Flag
34. Resume Flag
35. Virtual 8086 Mode flag
36. Alignment check flag (486+)
37. Virtual interrupt flag
38. Virtual interrupt pending flag
39. ID flag

Signals
40. Benign Signal
41. Malformed Inst Signal
42. Access Voilation Signal
43. Floating point exception Signal
44. Abort Signal

Dynamic Features based on LBR
45. Unconditional Jump
46. Conditional Jump
47. Return Instruction
48. Function Call
49. Loop
50. #Call-Return Pairs
51. Branch Variation

23

Figure 4.3: Exploitability prediction process

4.2 Exploitability Prediction

We use machine learning based approach to predict exploitability of crashes. Specifically, we use
Support Vector Machines (SVMs) as machine learning hypothesis for exploitability prediction and we
then extend it for crash prioritization. We also rank static and dynamic features based on their rele-
vance in exploitability prediction. In the following sections, we describe the dataset used for machine
learning hypothesis evaluation and its labeling, machine learning model selection and evaluation, crash
prioritization and finally feature ranking.

24

4.2.1 Dataset and Labelling

Machine learning requires large number of samples to train, validate and test a classification algo-
rithm. For our purpose, we have a total of 523 crashes with 166 exploitable and 357 non-exploitable
feature vectors. We consider only unique feature vectors because crashes from different applications
can have the same feature vector representation. We employ crashes from following sources for our
study. We also list the mechanisms used for labelling these data sources.

1. VDiscovery: Grieco et al. [14] have packaged the bugs submitted by Mayhem’s team [19] in a
dataset called VDiscovery and have provided the vulnerable binaries in a Linux virtual machine
with all the dependencies resolved. VDiscovery consists of a total of 402 unique feature vectors.
Labelling: We utilize the same labelling scheme used by the creators of VDiscovery i.e. ex-
plicit consistency checks made using GNU C standard library to indicate memory corruptions of
stack and heap and implicit consistency checks due to inconsistent arguments to function calls.
Programs which failed these checks are marked exploitable. We have 45 exploitable and 357
non-exploitable unique feature vectors from this dataset.

2. LAVA: We have added crashes from dataset created using LAVA [11]. LAVA is a tool that injects
synthetic bugs into the programs by identifying locations in execution trace where input bytes are
available, minimally modified and do not determine control flow. Modified DTA is used to inject
synthetic bugs adhering to the constraints mentioned above and inputs are provided to trigger
them. The bugs are memory corruption vulnerabilities and they mimic real world bugs as proven
by the authors of LAVA. For our purpose, we used crashes from toy program and Linux utilities
namely who and uniq. In total, we have 89 unique feature vectors from this dataset.
Labelling: Notice that all the samples in this dataset are exploitable by design because the bugs
are triggered by the inputs provided i.e. there is a flow from source to sink as discussed in DTA.

3. Miscellaneous: We manually downloaded some publically available programs from websites such
as ideone [5]. These programs consist of simple C codes. that are available in source code with
inputs on which these programs were executed. We compiled them and used only the programs
that crashed on our machines. We incorporated a total of 32 unique feature vectors from this
dataset.
Labelling: We utilized a basic DTA implementation to label the crashes. As discussed in DTA
section earlier, the reachability of tainted input to the crash site indicates that an attacker may
change the control flow of the program leading to exploitation or a denial of service condition.
Using this approach we labelled the dataset which consisted of 62 unique feature vectors out of
which 32 were exploitable. We incorporated exploitable samples only for classification to reduce
class imbalance in the dataset.

25

4.2.2 Learning Strategy

We pose the exploitability prediction as a binary classification problem with two classes i.e. Ex-
ploitable and Non-Exploitable. Each crash is represented as a feature vector in an m-dimensional input
space. In our case, m = 51. We divide the dataset randomly into two parts - development and eval-
uation in the ratio of 3:1, preserving the percentage of each class in the two sets. We further divide
the development set into training and validation set and perform cross-validation to determine the best
parameters for SVM classifier. We consider the evaluation set as the set of unseen samples and use it to
evaluate the selected classifier from cross-validation.

We use SVM with linear and rbf kernels. As discussed in the last section, we have to specify C
which is a user-defined regularization parameter for slack variables in the SVM optimization objective
(Eq.2.3). In addition, we have to select γ for rbf kernel. We set up a grid search with stratified cross-
validation to determine the optimal values of these two parameters. Grid search performs exhaustive
search over specified parameter values for an estimator (SVM in our case). For rbf, we consider all
the combinations given by the cartesian product SC × Sγ , where SC = {1, 101, 102, 103} and Sγ =

{10−4, 10−3, 10−2, 10−1, 1} are the sets of all specified values ofC and γ respectively. We use Stratified
K Fold for cross-validation (with K = 5), to preserve the percentage of samples of the two classes in
each fold to cater for class imbalance in the dataset. In order to evaluate the models over validation set,
we use weighted F1-measure Fw ∈ [0, 1] as the scoring metric (Eq.4.1), due to inherent class imbalance.

Fw =
1∑

l∈L |ŷl|
∑
l∈L
|ŷl|F (yl, ŷl) (4.1)

F =
2 ∗ P (y, ŷ) ∗R(y, ŷ)
P (y, ŷ) +R(y, ŷ)

(4.2)

P (y, ŷ) =
y ∩ ŷ
y

(4.3)

R(y, ŷ) =
y ∩ ŷ
ŷ

(4.4)

(4.5)

where,
y is the set of predicted (sample,label) pairs,
ŷ is the set of true (sample,label) pairs,
L is set of Labels i.e. {Exploitable,Non-Exploitable},
yl is the subset of y with label l,
P is the Precision that specifies the fraction of predicted exploitable that are actually exploitable out of
all predicted exploitable cases,
R is the Recall that specifies the fraction of predicted exploitable cases that are actually exploitable out
of all actually exploitable cases.

26

Once the user-specified parameters and kernel function are selected, the model is trained on the full
development set and evaluated on the evaluation set. We report accuracy in terms of precision, recall
and f1-score. We also provide confusion matrix and ROC curve showing relation between True Positive
Rate (TPR) and False Positive Rate (FPR) with varying classification threshold.

4.2.3 Crash Prioritization Approach

The output of an SVM classifier as given by Eq.(2.9) is,

ypred = sign(W ∗Tφ(X) + b∗) (4.6)

ypred = sign(f(x)) (4.7)

where, ypred is the prediction in the set {−1,+1}. However, to prioritize crashes, we need a more
continuous prediction that allows us to rank crashes on the basis of exploitability. So, we use prob-
abilistic estimate of exploitability of a crash as a measure for crash prioritization. To convert SVM
classification output to probabilistic measure, we utilize Platt Scaling [27] that provides a mapping
ρ : (−∞,+∞)→ [0, 1] using a logistic transformation of classifier scores f(x),

ρ(y = 1|x) = 1

1 + exp(Af(x) +B)
(4.8)

where A and B are scalar parameters, estimated using a maximum likelihood method that optimizes
on the same training & validation set as used by the original classifier f . Although, this results in a
slower training process, but it provides an interesting way to rank crashes. For example, a probability
prediction of 0.9 for a crash makes it more exploitable and hence more likely to be patched first, than a
crash with probability of 0.6. We do not threshold the probability distribution among categories similar
to !exploitable such as Probably-Exploitable, Probably-Not-Exploitable etc. however we propose to use
this distribution for assigning priorities to unseen crashes for the purpose of triaging. We also use these
probability estimates for generating ROC curve over test set that helps us to visualize the variation of
TPR with FPR as we vary the threshold. This process for crash prioritization is not used to provide
crash exploitability prediction which is purely predicted with an SVM in Eq(4.6), although the two are
correlated.

4.2.4 Feature Ranking Approach

Feature ranking provides an indication of the most important features used by a classification model
to distinguish between classes. To determine ranks of features used for crash analysis, we perform
recursive feature elimination(RFE) with a linear SVM over the development set. Given an estimator
(linear SVM in our case) that assigns weights to features (e.g., the coefficients of the linear model indi-
cated by Weightsf), the goal of recursive feature elimination (RFE) is to select features by recursively
considering smaller and smaller sets of features (F). First, the estimator is trained on the initial set of

27

features and weights are assigned to each one of them. Then, features whose absolute weights are the
smallest are pruned from the current set of features. This is determined with a parameter step that gives
the number of features to prune in each iteration. We have set it to 1. This procedure is recursively
repeated on the pruned set until the desired number of features to select (k = 1 in our case) is eventually
reached. The algorithm used is listed below.

1: procedure RFE
2: Inputs: {clf, k, step,Xtrain, ytrain}
3: Output: {Rankf}
4: F ← {f1, f2, f3 . . . fm}
5: Rankf ← []

6: while |F | > k do
7: Weightsf ← Train clf on {Xtrain, ytrain} with F features and return coefficients of pa-

rameters
8: Rankf ← Assign next higher rank to step features with minimum Weightsf

9: F ← Prune step features from F with minimum Weightsf .
10: end while
11: return Rankf
12: end procedure

28

Chapter 5

Evaluation

5.1 Implementation

The prototype of the proposed system is built on Ubuntu 12.04 LTS operating system supported
by Intel x86 core 2 duo 32 bit architecture. The prototype is written in Python and C++. The static
features are extracted from core dump using GDB [2] which is an open source debugger provided by
the GNU foundation. We have utilized gdb-python-api framework provided by GDB that supports
custom user commands. We have used capstone [1], which is a lightweight disassembly framework, for
disassembling the crashing instruction and branch records available from LBR. We have also made use
of readelf [6] utility to extract the permissions of allocated memory segments. We use a PIN [22] based
simulator to simulate LBR tracing mechanism. Since the dataset used for training is available within a
virtual machine that does not support LBR, we simulated LBR extraction using PIN by tracking every
branch instruction with source and destination addresses. PIN based simulations have been used in
previous studies such as Intel Processor Trace simulation in Gist [18] and do not affect the results in
any way except for increase in runtime overhead. In addition to LBR simulation, we also use PIN
for taint tracking for the purpose of DTA. We used a simple taint engine based on Salwan’s work [8]
and modified it suitably to run on 32-bit architecture that we have currently. We do not make any
assumptions about Intel based architecture used for LBR simulation or DTA and the approach will work
with 64-bit computers as well. We have used sklearn [7], a robust machine learning library available in
python, for classification, crash prioritization and feature ranking.

5.2 Results and Discussion

5.2.1 Parameter tuning and model selection

As discussed in the last section, we use an SVM classification model with two kernels linear and
rbf. The user-defined parameters are C and γ and the scoring metric for cross-validation is weighted
f1-measure. Table 5.1 gives the scoring of SVM models with different parameters from the ordered set

29

SC×Sγ . Based on the scores we find that the best SVM model with rbf kernel and parameters C = 100

and γ = 0.001 (highlighted in table).

Table 5.1: Cross-Validation Scores for SVM models

Kernel C γ Weighted f1-Score

rbf 1 0.0001 0.547 (+/-0.006)
rbf 1 0.001 0.547 (+/-0.006)
rbf 1 0.01 0.848 (+/-0.028)
rbf 1 0.1 0.868 (+/-0.047)
rbf 1 1 0.740 (+/-0.079)
rbf 10 0.0001 0.554 (+/-0.029)
rbf 10 0.001 0.847 (+/-0.101)
rbf 10 0.01 0.873 (+/-0.063)
rbf 10 0.1 0.871 (+/-0.051)
rbf 10 1 0.771 (+/-0.079)
rbf 100 0.0001 0.831 (+/-0.080)
rbf 100 0.001 0.880 (+/-0.058)
rbf 100 0.01 0.863 (+/-0.075)
rbf 100 0.1 0.797 (+/-0.043)
rbf 100 1 0.771 (+/-0.079)
rbf 1000 0.0001 0.874 (+/-0.064)
rbf 1000 0.001 0.875 (+/-0.068)
rbf 1000 0.01 0.837 (+/-0.088)
rbf 1000 0.1 0.800 (+/-0.052)
rbf 1000 1 0.771 (+/-0.079)
linear 1 - 0.871 (+/-0.060)
linear 10 - 0.859 (+/-0.048)
linear 100 - 0.859 (+/-0.048)
linear 1000 - 0.859 (+/-0.048)

It is interesting to note here that when C is small and γ is also small, the f1-score is low. For exam-
ple, if we take C = 1 and γ = 0.0001, the score is only 0.547. This case clearly indicates under-fitting
as we also discussed in earlier section. If we consider a high C and high γ values, such as 1000 and 1
respectively, we find that the score is again low, i.e. 0.771. This scenario indicates over-fitting. If we
consider a fixed C (say C = 1), then we observe that with increasing γ, the score first increases and
then decreases. This shows a trend from under-fitting of the training set to over-fitting with change in γ.
Therefore, we used grid search with cross-validation to determine the optimal parameter values for the
given development dataset.

Finally, we also note that the scores for linear SVM are consistent apart from a minor drop due to
an increase in value of C from 1 to 10. Although this does not represent a linearly separable case (as

30

f1-score is not 1), but it does indicate presence of errors in the training data because some of the samples
are always classified incorrectly even if the model tries to overfit the data by increasing value of C. Pos-
sible reasons for erroneous data include dataset labeling procedure, distinguishing feature information
and loss of exploitability related information in core-dump and LBR.

5.2.2 Exploitability Prediction

We now train the selected classifier on the full development dataset that includes validation set and
evaluate it on evaluation set. We report precision, recall and f1-score for two classes and accuracy for
both classes in Table 5.2. Accuracy is the ratio of total number of correctly classified samples to the to-
tal number of samples. This error metric is inaccurate for imbalanced datasets because it will be biased
towards the class with higher number of samples. Support represents the total number of evaluation
samples available in a particular class.

We also list the confusion matrix in Table 5.3, that numerically describes the classifier prediction
with actual class of the samples.

Table 5.2: Exploitability Prediction Accuracy

class precision recall f1-score accuracy support

Exp. 0.95 0.81 0.88 - 48
Non-Exp. 0.92 0.98 0.95 - 109

- - - 0.93 157

Table 5.3: Confusion Matrix

Predicted/Actual Exploitable Non-Exploitable

Exploitable 39 9
Non-Exploitable 2 107

Figure 5.1 shows the Receiver-Operating-Characteristic (ROC) curve for the SVM model selected
using grid-search over evaluation set. This curve shows the relation between TPR and FPR as the thresh-
old varies. The threshold is a probability Pr ∈ [0, 1] such that if ρ(y = 1|x) ≥ Pr the feature vector x
is predicted as Exploitable, else it is predicted as Non-Exploitable. ρ transforms the classifier scores to
probabilistic estimates using logistic regression as discussed in the last section on crash prioritization
(see Eq.4.8).

Table 5.4 shows time taken by exploitability prediction tasks averaged over 100 real-world applica-
tions taken from VDiscovery dataset. We found SVM model training time for 300 testcases to be 0.451

31

Figure 5.1: ROC curve on evaluation set with selected classifier.

32

Table 5.4: Average time statistics for exploitability prediction tasks

Task Execution Time per testcase (sec)

Original execution 0.401
LBR simulation with PIN 4.522
Dumping of core 0.426
Feature Extraction (static+dyn) 1.356
Dynamic Taint Analysis with PIN 73.493

sec excluding optimal parameter determination and exploitability prediction time for 150 testcases to be
0.00423 sec. This clearly indicates feasibility of Exniffer, for exploitability prediction in terms of effi-
ciency in real-time production systems. We can also see that DTA with PIN introduces a lot of overhead
as compared to Exniffer and is unsuitable for production systems. It is also worth noting that hardware
assisted LBR extraction will be faster than LBR simulation which currently takes around 4.5 sec.

5.2.3 Crash Prioritization

As discussed in the last section, we can utilize the probability assigned for a test sample as a measure
of its priority to fix the bug. Consider the Listing 5.1 below which is part of evaluation set. Perhaps
the coder is interested to convert upper case letters in an array temp to lower case. But in the pro-
cess he forgot to copy the values from the input array b to temp. And finally, he copies temp to a[i].
Due to infinite loop at line 6, i goes out of bounds of array a and results in a segmentation fault at line 12.

Listing 5.1: Prioritizing a non-exploitable crash

1 i n t main () {
2 char a [4 0] [4 0] ;
3 long i n t b [4 0] ;
4 i n t i =0 ;
5 char temp [4 0] ;
6 whi le (1) { / / i n f i n i t e loop
7 long i n t j ;
8 f o r (j =0 ; j<= s t r l e n (temp) ; j ++) {
9 i f (temp [j]>=65 && temp [j]<=90)

10 temp [j]+=32 ;
11 }
12 s t r c p y (a [i] , temp) ; /∗ temp i s c o p i e d i n a [i] −> Crash ! ∗ /
13 s c a n f (”%l d ” ,&b [i]) ; /∗ u s e r i n p u t i n b [i] ∗ /
14 i ++;

33

15 }
16
17 long i n t j ;
18 f o r (j =0 ; j<i ; j ++) {
19 p r i n t f (”%s %l d ” , a [j] , b [j]) ;
20 }
21 re turn 0 ;
22 }

Although naively written, this case is interesting to consider because it is non-exploitable. The input
of attacker does not reach the crash site because input in b is totally disjoint from array a. We also
used DTA to confirm that crash instruction is not affected by user input. However, this case is predicted
exploitable by both !exploitable and Exniffer.

!exploitable classifies this case at the highest level of exploitability and provides the following ex-
planation:
The target crashed on an access violation at an address matching the destination operand of the in-
struction. This likely indicates a write access violation, which means the attacker may control the write
address and/or value.

The crashing instruction is movl %eax, (%edx) which writes the value of in register %eax to mem-
ory location at address %edx. So, there is a write access violation but as we already know it is not
exploitable.

Exniffer also predicted this case to be exploitable. However, if we rank the crashes based on proba-
bility estimates, we found that this case had a probability of 0.573 only which is not that high and hence
does not represent a severely exploitable case.

In another example from evaluation set, we consider an exploitable scenario and report probability
estimate of the classifier. We also compare it with !exploitable. In the Listing 5.2 below, we see that the
user’s input is stored in input array allocated on heap. Another arrayB is updated using update method,
however this results in a segmentation fault at line 8. The parameter row of update function receives the
value 30 equal to len1. The loop at line 5 increments i to 30. The maximum number of rows in B are 30
and it can be indexed until 29, however, in line 8 when the coder tries to write the value of input[j] at
B[i], where i = 30, it results in crash. The coder should have re-initialized variable i. It is very obvious
from the crashing instruction that this is an exploitable scenario since the value of input array directly
affects the crash site. We also confirmed exploitability of this crash with DTA.

34

Exniffer predicted this case as Exploitable. We found the probability estimate of this scenario is
0.923 which gives a fairly high confidence to keep the priority of fixing this crash higher.

!exploitable on the other hand predicted that the crash is Probably Exploitable, which is a lower
category for a clearly exploitable case. It is also clear with the following explanation that !exploitable
does not enough information to make the decision:
The target crashed on an access violation at an address matching the destination operand of the instruc-
tion. This likely indicates a write access violation, which means the attacker may control write address
and/or value. However, there is a chance it could be a NULL dereference.

Listing 5.2: Prioritizing an exploitable crash

1 void u p d a t e (i n t ∗∗B , i n t row , i n t co l , i n t ∗ i n p u t , i n t k){
2 p r i n t f (” Update \n ”) ;
3 i n t i , j ;
4 i =k ;
5 f o r (i =0 ; i<row ; i ++)
6 p r i n t f (”\n%d %d ” , i , i n p u t [i]) ;
7 f o r (j =0 ; j <2; j ++)
8 B[i] [j]= i n p u t [j] ; / / c r a s h ! coder f o r g o t t o re− i n i t i a l i z e i
9 }

10
11 i n t main ()
12 {
13 i n t l en1 , len2 , i , k =0 , t e s t c a s e , l =0 ;
14 i n t ∗ i n p u t = (i n t ∗) ma l lo c (s i z e o f (i n t) ∗ 3) ;
15
16 l e n 2 = 3 ;
17 l e n 1 = 3 0 ;
18 i n t ∗∗B = (i n t ∗∗) m a l l oc ((l e n 1) ∗ s i z e o f (i n t ∗)) ;
19 f o r (i =0 ; i <(l e n 1) ; i ++)
20 B[i] = (i n t ∗) ma l lo c ((l e n 2) ∗ s i z e o f (i n t)) ;
21
22 p r i n t f (” E n t e r no . o f t e s t c a s e s \n ”) ;
23 s c a n f (”%d ” ,& t e s t c a s e) ;
24 whi le (l< t e s t c a s e){
25 / / p r i n t f (” E n t e r a r r a y : ”) ;
26 f o r (i =0 ; i <3; i ++){

35

27 s c a n f (”%d ” ,& i n p u t [i]) ;
28 p r i n t f (”\n%d %d ” , i , i n p u t [i]) ; / / u s e r i n p u t
29 }
30
31 i f (un iq ue (B , len1 , len2 , i n p u t , k)) { / / un iq ue r e t u r n s t r u e
32 p r i n t f (”%d %d %d\n ” , len1 , len2 , k) ;
33 / / c o n t r o l r e d i r e c t e d t o up da t e
34 u p d a t e (B , len1 , len2 , i n p u t , k) ;
35 k ++;
36 }
37 l ++;
38 }
39 l e n 2 =3;
40 l e n 1 =k ;
41 p r i n t a r r a y (B , len1 , l e n 2) ;
42 re turn 0 ;
43 }

5.2.4 Feature Ranking

As discussed earlier, we use Recursive Feature Elimination (RFE) to rank the features with a linear
SVM. Figure 5.5 shows top ten features available as a result of application of RFE to training set.

Table 5.5: Top 10 features based on RFE

id Feature Description

1. Backtrace is Corrupt
13. Memory operand is Null
8. EIP Segment is Executable
19. Operand is immediate
11. Memory operand is Source
42. Access Voilation Signal
49. Loop
17. #Operands = 3+
46. Conditional Jump
43. Floating point exception Signal

The top feature i.e. corruption of backtrace is generally a result of buffer overflow that overwrites the
saved base pointer register (EBP) of the last frame which leads to incorrect unwinding of stack frames.
It is therefore a major feature to determine exploitable conditions and is correctly predicted by RFE
algorithm.

36

To accomplish Data Execution Prevention (DEP),stack generally has write permissions but not execute.
EIP must ideally point to the segments that only have execute permissions, but if the instruction register
points to a write segment without execute permission, then it will result in a crash. The feature EIP
Segment is Executable in Table 5.5 highlights this.

The feature Loop, extracted from LBR, represents if the crashing instruction is within a loop. It is
a known fact that overflow of neighboring values outside of array bounds generally happens within a
loop such as copying operation using strcpy. Another feature Conditional Jump extracted from LBR
checks if the last branch instruction was a conditional jump. Conditional jump has a condition that may
be affected by the attacker’s input. The branch instruction may also coincide with crashing instruction
which is a more serious threat as it may give the control flow in the hands of the attacker.

In Table 5.5, we also find features that support non-exploitable scenarios, such as Memory operand
is null which represent a null deference. Also, Floating point exception signal generally represents a
non-exploitable case of division by zero. It may also represent cases which are exploitable to the extent
of causing DoS i.e. an application crash.

We also note that features that do not clearly represent either of the classes are also in the top-
ten list such as Operand is immediate and #Operands = 3+. While the former feature represents the
availability of immediate operand in the crashing instruction that gives an indication of infeasibility of
manipulation of register values, the latter checks if there are three or more operands in the crashing
instruction. Memory operand is Source is also a distinguishing feature that adds information on read-
access violation. A read-access violation is caused due to an illegal memory read i.e. either the memory
address of that segment does not have read permission or the memory segment is not allocated at all.
This may represent exploitable cases if the register that is dereferenced is tainted.

5.2.5 Comparison with !exploitable

!exploitable is rule based classifier, so it does not have any hypothesis to learn. It can be used di-
rectly on the entire dataset. Table 5.6 gives the prediction of !exploitable on the entire dataset using a
confusion matrix represented as percentage for respective classes. The first column is divided as per the
categories assigned by !exploitable. Predicted categories are given in rows while the actual categories
are listed in columns.

Out of 100% of the exploitable cases, we found that 15% of all the exploitable samples and 7% of
non-exploitable samples are marked as exploitable. A large number of exploitable samples are labelled
unknown because there was not enough information for !exploitable to label the crash in one of the other
categories. Out of 100% of non-exploitable cases, 59% are marked Probably-Not-Exploitable which
shows that !exploitable performs better on non-exploitable cases as compared to exploitable scenarios.

37

Table 5.6: Confusion matrix for !exploitable

Predicted/Actual Exploitable Non-Exploitable

Exploitable 15% 7%
Probably-Exploitable 2% 18%

Probably-Not-Exploitable 1% 59%
Unknown 82% 16%

However, the results show that accuracy of !exploitable is low as compared to Exniffer primarily because
it consists of a rule-based engine i.e. the features as well as decision functions are hard-coded, which
makes it difficult for the system to adapt to different scenarios. Exniffer on the other hand uses machine
learning that automatically learns relevant features and decision boundary given sufficient data thereby
adapting and generalizing to a range of different scenarios. Using the crash prioritization approach, we
also provide a continuous crash prioritizing technique for crash ranking. Each crash is associated with
a probabilistic measure of its exploitability. However, in case of !exploitable, if 15% of the samples are
exploitable, then it does not answer the question that among these samples, which ones are to be fixed
first i.e. there is no sub-class priorities available. Table 5.7 shows the exact improvement of Exniffer
over !exploitable. We found that the recall for Exploitable class is very low i.e. 0.16 as compared to
Exniffer.

Table 5.7: Exploitability Prediction Accuracy

class precision recall f1-score

Exp. 0.62 0.16 0.26
Non-Exp. 0.26 0.74 0.38

Finally, in !exploitable all the features are hard-coded and the importance of features is pre-decided.
Since classification process is not data-driven, it is difficult to create complex decision functions using
these features to classify a crash accurately.

38

Chapter 6

Conclusion and Future Work

Today there are millions of bugs reported across thousands of software products for example 1.7 mil-
lion bugs are reported in 12,275 projects at Launchpad since 2004 [3]. Bugs resulting in these crashes
can be exploitable and must be fixed in timely manner to avoid security ramifications. As a result, or-
ganizations are moving towards automated crash analysis to save time, effort and resources. Since there
is enough crash data available to a general organization, it is possible to perform data-driven automated
crash analysis that can help developers to identify and patch security crashes first.

In this paper, we proposed Exniffer that uses machine learning to classify and prioritize crashes. We
used a novel combination of static and dynamic features extracted from core-dump and hardware branch
tracing facilities that incurs negligible runtime-overhead which makes it suitable for production systems.
The results show that the approach is effective in exploitability prediction and crash prioritization. With
this system, we were able to achieve a true positive rate of 81% for exploitable scenarios and a very low
false positive rate of 2%. We also identified relevant features for exploitability prediction and found that
both static and dynamic features play a role in separating exploitable and non-exploitable cases.

In future, we plan to extend our work by incorporating the following:

1. Expand feature set by engineering of static and dynamic features to improve accuracy further.

2. Increase dataset size to perform a more exhaustive testing of the system.

3. Consider memory vulnerabilities from executables compiled from sources other than C and C++.

4. Predict vulnerability type for an exploitable case.

5. Intel PT allows capturing branch outcomes and timing information with low overhead (≤ 5%).
Leveraging the fact that short term memory for failure diagnosis is sufficient to determine root
cause, we will try to reduce the overhead even further.

39

Related Publications

”Exniffer: Learning to Rank Crashes by Assessing the Exploitability from Memory Dump” Shubham
Tripathi, Gustavo Grieco, Sanjay Rawat. in submission of 24th Asia-Pacific Software Engineering
Conference, 2017, Nanjing, China.

40

Bibliography

[1] Capstone: The ultimate disassembler. http://www.capstone-engine.org/.

[2] Gdb: The gnu project debugger. https://www.sourceware.org/gdb/.

[3] Launchpad software collaboration platform bug tracker statistics. https://launchpad.net/bugs.

[4] Nehalem core pmu. https://software.intel.com/en-us/search/gss/nehalem.

[5] Online compiler and debugging tool. http://ideone.com/recent.

[6] Readelf: Gnu binary utilities. https://sourceware.org/binutils/docs/binutils/readelf.html.

[7] scikit-learn: Machine learning in python. http://scikit-learn.org/stable/.

[8] Taint analysis pin tools. https://github.com/JonathanSalwan/PinTools.

[9] !exploitable, 2013. https://msecdbg.codeplex.com/.

[10] W. Cui, M. Peinado, S. K. Cha, Y. Fratantonio, and V. P. Kemerlis. Retracer: triaging crashes by reverse

execution from partial memory dumps. In Proc. of 38th International Conference on Software Engineering,

pages 820–831, New York, USA, 2016. ACM.

[11] B. Dolan-Gavitt, P. Hulin, E. Kirda, T. Leek, A. Mambretti, F. Robertson, Wil; Ulrich, and R. Whelan. Lava:

Large-scale automated vulnerability addition. In Proc. of IEEE Symposium on Security and Privacy (SP),

pages 110 – 121, 2016.

[12] K. J. Eom, J. Y. Paik, S. K. Mok, H. G. Jeon, E. S. Cho, D. W. Kim, and J. Ryu. Automated crash filtering

for arm binary programs. In Proc. of Computer Software and Applications Conference, pages 478 – 483.

IEEE, 2015.

[13] J. Foote. Cert triage tools. https://www.cert.org/vulnerability-analysis/tools/triage.cfm?

[14] G. Grieco, G. L. Grinblat, L. Uzal, S. Rawat, J. Feist, and L. Mounier. Toward large-scale vulnerability

discovery using machine learning. In Proc. of Conference on Data and Application Security and Privacy,

pages 85–96, NY, USA, 2016. ACM.

[15] S. Heelan and D. Kroening. Automatic generation of control flow hijacking exploits for software vulnera-

bilities. In Univ. Oxford, London, U.K., 2009.

[16] S.-K. Huang, M.-H. Huang, P.-Y. Huang, H.-L. Lu, and C.-W. Lai. Software crash analysis for automatic

exploit generation on binary programs. In Proc. of IEEE Transactions on Reliability, pages 270 – 289, 2014.

41

[17] S. L. Joy Arulraj, Guoliang Jin. Leveraging the short-term memory of hardware to diagnose production-run

software failures. In Proc. of international conference on Architectural support for programming languages

and operating systems (ASPLOS), pages 207–222, NY, USA, 2014.

[18] B. Kasikci, B. Schubert, C. Pereira, G. Pokam, and G. Candea. Failure sketching: A technique for automated

root cause diagnosis of in production failures. In Proc. of Symposium on Operating Systems Principles

(SOSP), pages 344–360, NY, USA, 2015. ACM.

[19] S. Kil-Cha, T. Avgerinos, A. Rebert, and D. Brumley. Unleashing mayhem on binary code. In Proc. of

IEEE Symposium on Security and Privacy, pages 380 – 394, 2012.

[20] D. Kim, X. Wang, S. Kim, A. Zeller, S. C. Cheung, and S. Park. Which crashes should i fix first?: Predicting

top crashes at an early stage to prioritize debugging efforts. In Proc. of IEEE Transactions on Software

Engineering, pages 430 – 447, 2011.

[21] G. Y. J. L. Z. S. Y. Kucuk. Exploitmeter: Combining fuzzing with machine learning for automated evaluation

of software exploitability. In Proc. of 1st IEEE Symposium on Privacy-Aware Computing, 2017.

[22] C. K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood.

Pin: building customized program analysis tools with dynamic instrumentation. In Proc. of ACM SIGPLAN

conference on Programming language design and implementation, pages 190–200, 2005.

[23] C. Miller, J. Caballero, N. M. Johnson, M. Gyung Kang, S. McCamant, P. Poosankam, and D. Song. Crash

analysis with bitblaze, 2010.

[24] S. Rawat and L. Mounier. Finding buffer overflow inducing loops in binary executables. In IEEE Sixth

International Conference on Software Security and Reliability, pages 177 – 186, 2012.

[25] M. B. V.-T. P. M.-D. N. A. Roychoudhury. Directed greybox fuzzing. In Proc. of the 2017 ACM SIGSAC

Conference on Computer and Communications Security, pages 2329–2344. ACM, 2017.

[26] M. D. F. L. G. Z. V. Srikumar. Deeplog: Anomaly detection and diagnosis from system logs through deep

learning. In Proc. of the 2017 ACM SIGSAC Conference on Computer and Communications Security, pages

1285–1298. ACM, 2017.

[27] H.-T. L. C.-J. L. R. C. Weng. A note on platts probabilistic outputs for support vector machines. In Machine

Learning, pages 68:267–276, 2007.

[28] Z. P. W. J. W. X. Z. Wu. Program crash analysis based on taint analysis. In Proc. of Ninth IEEE International

Conference on P2P, Parallel, Grid, Cloud and Internet Computing, pages 492 – 498, 2014.

[29] J. Xu, D. Mu, P. Chen, X. Xing, P. Wang, and P. Liu. Credal: Towards locating a memory corruption

vulnerability with your core dump. In Proc.CCS’16, pages 529–540, New York, NY, USA, 2016. ACM.

[30] T. F. Yi, C. Feng, and C. J. Tang. Binary vulnerability exploitability analysis. In Proc. of International

Conference on Information System and Artificial Intelligence (ISAI), pages 181–185. IEEE, 2016.

42

