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Abstract. In this paper, we study how an oligopolist influences the
coalition structure in federated cloud markets. Specifically, we use co-
operative game theory to model the circumstances under which a cloud
provider prefers to join a cloud federation vis-a-vis consider taking a
price offer made by an oligopolist.
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1 Introduction

The current cloud computing market structure is akin to oligopoly as few mega
cloud providers completely own the market share. Each of them individually or
in collusion has the power to affect the market prices leading to what is called an
imperfect competition. Further, due to the large scale of operations in the data
centers associated with these oligopolists, there is an acute stress on electricity
and other natural resources. Many studies indicated the resulting adverse impact
on the environment due to carbon emissions and other pollutants.

Since computing has become a common commodity these days, it is easy to
envisage a large number of micro cloud providers with small to medium scale
data centers. With the presence of a large number of producers, an oligopolistic
market leans towards perfectly competitive market. In a market with perfect
competition, producers become price takers and it is not possible for one or few
cloud providers to affect the market prices. Further, as these small data centers
are geographically spread out, the stress on the local resources and the impact on
the microclimate will be mitigated, especially by the usage of renewable energy
resources and productive use of dissipiated heat energy.

However, such micro cloud providers will be able to serve only moderate sized
consumer requests due to the limited availability of resources in their data cen-
ters. In order to serve large consumer requests many micro cloud providers have
to come together and form a coalition or a federation. The federation formation
can happen in a peer-to-peer fashion leading to what is called an Peer-to-Peer
Inter-Cloud Federation (refer Figure 1(a)) [1]. The other option is to use the ser-
vices of a broker as in Figure 1(b) resulting in a Multi-Cloud federation model.

Given a set of cloud providers and a broker, in this paper, we study the ques-
tion whether it is beneficial for cloud providers to form a peer-to-peer federation
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Fig. 1. Cloud Federation Models

or to subscribe to the services of a broker. We use cooperative game theory to
address this interesting question. To the best of our knowledge, we did not find
any prior work related to the proposed problem of study in this paper.

In Section 2, we provide the necessary background on cooperative game the-
ory and linear production games; in Section 3, we formulate the cloud federation
formation and payoff distribution using linear production games; in Section 4,
we show the impact of an oligopolist on federation formation and how we can
arrive at stable coalitional structures; in Section 5 we present our experimen-
tal analysis; Section 6 contains the related work; and finally we conclude with
Section 7.

2 Background

We study the proposed problem in this paper using a special class of games called
linear production games from the cooperative game theory [2, 3]. We provide the
necessary game theoretic background in this section to understand the rest of
the paper.

2.1 Cooperative Game Theory

Given a set of N = {1, · · · , n} players, a subset S ⊆ N of them can pool their
resources and form a coalition to generate an utility or value v(S). We say that
the utility is transferable if it can be split among the coalition partners in an
arbitrary fashion.

Definition 1. A cooperative n-person game in coalitional form is denoted by
G = (N, v) where N = {1, · · · , n} and v : 2N → R+, with v(φ) = 0. The
function v is called the characteristic function of the game and v(S) is called the
value of the coalition S.

We say that a cooperative game is super-additive if v(S ∪ T ) ≥ v(S) + v(T ) for
all S, T ∈ 2N with S ∩ T = φ. When a game is super-additive, then the value
v(N) generated by the grand coalition N would be the maximum. However, the
formation of a grand coalition or any other coalition depends on the payoff vector
which determines the profit distribution among the coalition members.
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Definition 2. A payoff vector x = (x1, · · · , xn) ∈ Rn is called an imputation if
it satisfies the following individual rationality and efficiency conditions.

1. Individual rationality: xi ≥ v({i}) ∀i ∈ N .
2. Efficiency:

∑n
i=1 xi = v(N).

The set of imputations associated with a game G = (N, v) is denoted by I(G).
For a payoff vector x and a coalition S ⊆ N , let x(S) denote

∑
i∈S xi.

Definition 3. The core of a game G = (N, v) denoted as C(G) is defined as
follows.

C(G) = { x ∈ I(G) | x(F ) ≥ v(F ) ∀F ⊆ N }

If the payoff vector is from the core, then there is no incentive for any sub-
coalition S ⊂ N to deviate from the grand coalition N , thus ensuring stability.
However, the core of a game is not necessarily non-empty. Bondareva [4] and
Shapley [5] gave independently a characterization of games with a non-empty
core. The characteristic vector eS associated with a coalition S ⊆ N is defined
as eSi = 1 if i ∈ S and eSi = 0 if i ∈ N \ S.

Definition 4. A map λ : 2N \ {φ} → R+ is called a balanced map if∑
S∈2N\{φ}

λ(S)eS = eN .

Definition 5. A cooperative game G = (N, v) is called a balanced game if for
each balanced map λ : 2N \ {φ} → R+ the following condition holds good.∑

S∈2N\{φ}

λ(S)v(S) ≤ v(N)

A cooperative game G = (N, v) can induce a subgame GS = (S, vS) where
S ⊆ N and vS(T ) = v(T ) for all T ⊆ S.

Definition 6. A cooperative game G = (N, v) is called totally balanced if every
induced subgame GS = (S, vS) for all S ∈ 2N \ {φ} is balanced.

The following theorem due to Bondareva and Shapley characterizes the set
of games with a non-empty core.

Theorem 1. A cooperative game G = (N, v) will have a non-empty core if and
only if it is a balanced game.

2.2 Linear Production Games

Consider a production situation where m different types of products P1, . . . , Pm
can be manufactured using q distinct kind of resources G1, . . . , Gq. Further,
there is a production matrix Am×q whose (j, k)th entry ajk denotes the number
of units of resource Gk required to manufacture an unit of product Pj . Overall,
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the jth row of the matrix denoted by aj gives the overall resource requirements
per unit of product Pj . The linearity of the production situation comes from
the fact that to manufacture α units of product Pj the corresponding resource
requirements scale-up linearly to αaj . Let the jth entry of the price vector c1×m =
(c1, · · · , cm) denote the price per unit of product Pj . Given a resource bundle
bq×1 = (b1, · · · , bq)T with non-negative entries, the optimal production plan
xm×1 = (x1, · · · , xm)T is obtained by solving the following linear programming
problem.

Maximize
x

c · x

subject to AT · x ≤ b
x ≥ 0

Consider now an n-player game G = (N, v) wherein the resource bundle
owned by the ith player is denoted by bi. The resource bundle owned by a
coalition S ⊆ N is defined as b(S) =

∑
i∈S bi. The value v(S) associated with

the coalition S is obtained by solving the following linear programming problem.

Maximize
x

c · x

subject to AT · x ≤ b(S)

x ≥ 0

The following is an important theorem which we use in this paper.

Theorem 2. Every linear production game G = (N, v) is totally balanced. Hence
not only the core C(G) is non-empty but also the core C(GS) of every induced
subgame GS = (S, vS) where S ⊆ N is also non-empty.

3 Federation Formation and Payoff Distribution using
Linear Production Games

In this section, we will present a model for peer-to-peer inter-cloud federation
and an efficient payoff distribution scheme which gives a core allocation using
linear production games.

3.1 Federation Formation Model

Let I = {C1, · · · , Cn} be a collection of cloud providers. A cloud provider Ci
owns a resource bundle bi = (bci , b

m
i , b

s
i )
T where bci is the total number of available

compute cores; bmi and bsi denotes the total available main memory and secondary
storage respectively. The cloud providers can offer m types of virtual machines
denoted by VMj , 1 ≤ j ≤ m. The core, main memory and storage requriments
for each virtual machine type is given by the production matrix Am×3 whose
jth row, aj = (acj , a

m
j , a

s
j), corresponds to the resource configuration vector of a

virtual machine of type VMj . Table 2 gives example virtual machine types and
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the associated production matrix used in the experimental analysis section of
this paper. The per unit market price of different types of virtual machines is
denoted by the price vector p = (p1, · · · , pm). Table 2 also provides the hourly
rental price for various types of virtual machines considered. Given this market
scenario, the cloud providers have to decide upon a federation structure such
that each of them maximize their respective payoffs.

It can be observed that we can model this problem by constructing a linear
production game which is exactly similar to the game Glp = (N, v) described in
the Section 2.2. We denote the total pooled cores, memory and storage from a
federation S by bc(S), bm(S) and bs(S) respectively. The value v(S) associated
with a federation S is obtained by solving the following linear programming
problem OPTLP(S).

Maximize
x

m∑
j=1

xjpj (1a)

subject to

m∑
j=1

xja
c
j ≤ bc(S) (1b)

m∑
j=1

xja
m
j ≤ bm(S) (1c)

m∑
j=1

xja
s
j ≤ bs(S) (1d)

xj ≥ 0 (1 ≤ j ≤ m) (1e)

Constraints 1b, 1c and 1d denote the capacity constraints corresponding to
core, memory and storage respectively. In fact, this game being super additive,
we can infer that the grand coalition generates the maximum revenue, which is
obtained by solving the linear programming problem OPTLP(N). Further, from
Theorem 2, we know that there is a core allocation possible as it is a totally
balanced game. In the next section, we show how we can do payoff distribution
using a core allocation, thereby achieving the stability of the grand coalition.

3.2 Payoff Distribution

Owen [6] showed that we can compute a core allocation for a linear production
game Glp = (N, v) by solving the following dual problem associated with the
primal problem OPTLP(N).

Minimize
y

y1b
c(N) + y2b

m(N) + y3b
s(N) (2a)

subject to y1a
c
j + y2a

m
j + y3a

s
j ≥ pj (∀j, 1 ≤ j ≤ m) (2b)

y ≥ 0 (2c)
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We interpret the optimal solution y∗ = (yc∗, y
m
∗ , y

s
∗) to the dual problem as

the shadow prices for cores, memory and storage. Owen proved that we can
obtain a core allocation vector by paying the ith player with the resource bundle
bi = (bci , b

m
i , b

s
i )
T as follows.

αi(N) =
∑

j∈{c,m,s}

yj∗b
j
i

We denote the payoff vector as α(N) = (α1(N), · · · , αn(N)) where the param-
eter N indicates that the payoff corresponds to the grand coalition. The subset
of core allocations which are formed using optimal dual solutions is know as the
Owen set. In the next section, we will present how a broker or an oligopolist
can intervene in the formation of a grand coalition by offering higher payoff to
individual cloud providers.

4 Intervention of an Oligopolist in Federation Formation

In order to maintain market control, the oligopolists may intervene in the peer-
to-peer federation formation, refer Figure 1(a), by offering incentives to the micro
cloud providers to lend their resources to them. The oligopolists in turn use the
lent resources to supply virtual machines to the end consumers potentially at a
higher price due to their wider market reach. During this process, an oligopolist
assumes the role of a broker leading to a multi-cloud architecture depicted in
Figure 1(b). In the rest of this section, we study how an oligopolist can affect the
structure of cloud federation and the resulting impact on the payoff to individual
cloud providers.

Let an oligopolist offers a price mi to rent the entire resource bundle bi
from the cloud provider Ci. In this paper, we study the restricted problem of
an interaction between a single oligopolist and a set of cloud providers3. One
simple way of considering more than one oligopolist is to set the price offer mi

made to the cloud provider Ci to the maximum of the offers made by different
oligopolists in the market, and the rest of the theory proposed in this section
holds good.

4.1 Core Allocation for Subgames

In Section 3.2, we described how the payoff distribution vector α(N) can be
computed for the game Glp = (N, v). Since, every subgame GS = (S, vS) induced
by Glp is also a linear production game, we can analogously compute the payoff
distribution vector α(S) by solving the dual problem for the primal problem
OPTLP(S). Overall, we have to solve 2n − 1 linear programming problems to
compute the payoff distribution vectors for all the induced subgames, which is

3 An alternate way to view this problem is to consider the single oligopolist as a
monopolist by ignoring the market influences due to other oligopolists which is not
the subject matter of this paper.
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computationally expensive. However, it can be noted from the constraints (2b)
and (2c), the feasible region for the dual problem of OPTLP(S) is independent
of the federation S and only the coefficients of the objective function change.
Hence, for practical values of m, we can enumerate the basic feasible soloutions,
in other words, the extreme points of the polyhedra defined by the dual problem
constraints. For different objective functions associated with different subgames,
we can exhaustively check the list of extreme points and find the optimal solution.

4.2 Influence of the Oligopolist

Definition 7. The marginal payoff for a cloud provider Ci with respect to a
coalition S and a price offer mi from an oligopolist is defined as

βi(S) = αi(S)−mi.

A cloud provider has an incentive to deviate from a federation S and take
up the offer of an oligopolist if and only if βi(S) < 0. Thus the oligopolist may
destabilize the grand coalition as all the cloud providers whose βi(N) < 0 will
break away from the coalition.

Definition 8. For a cooperative game G = (N, v) and a price offer vector m =
(m1, · · · ,mn), a coalition S ⊆ N is called a feasible coalition if and only if
βi(S) ≥ 0 for all i ∈ S.

From the discussion in Section 4.1, we can enumerate the list of all feasible
coalitions in 2N by computing the respective payoff distribution vectors.

Definition 9. Given price offer vector m, we call a partition CS = {F1, · · · , Fk−1, F ∗}
of the player set N as a stable coalition structure if

1. The coalitions Fi, 1 ≤ i ≤ k − 1 are feasible coalitions.
2. There exists no subset S ⊆ F ∗ which is a feasible coalition. Thus all the

cloud players from F ∗ take the price offer made by the monopolist.

Note that if mi < v({i}), then cloud provider Ci is a feasible coalition by himself.

4.3 Finding a Stable Coalition Structure

There can be many possible stable coalition structures for a given price offer
vector from the oligopolist. We may prefer one stable coalition structure to
other based on certain criteria. For example, one criteria could be to minimize
the number of cloud providers taking up oligopolist’s offer, i.e., |F ∗|. Another
crtieria could be to be maximize the sum of payoffs of all the cloud providers,
i.e.,

∑k−1
i=1

∑
j∈Fi

αj(Fi) +
∑
j∈F∗ mj .

Definition 10. For a feasible coaltion F and a price offer vector m = (m1, · · · ,mn),
we associate a goodness value g(F ) which is defined as follows.

g(F ) =
∑
i∈F

(αi(F )−mi)/|F |
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In this paper, we propose the following simple greedy algorithm for stable
coalition formation.

1. Let the initial coalition structure be CS = φ. Repeat the following step until
it terminates.

2. (ith iteration)
(a) Among all the feasible coalitions, choose a coalition Fi with a maximum

goodness value g(Fi) and F ∩ Fi = φ for all F ∈ CS.
(b) If there exists no feasible coalition which is disjoint with the already

chosen feasible coalitions, then set

F ∗ = N − ∪F∈CSF
CS = CS ∪ {F ∗}

and exit the algorithm.

We can easily note from the above algorithm, that different goodness functions
will yield different coalition structures. In the next section, we do an experimental
analysis on the influence of the oligopolist on stable coalition formation and
overall payoff distribution.

5 Experimental Results

In this section, we study how increasing price offers from the oligopolist to the
individual cloud providers impact the structure of stable coalitions formed. We
consider a set of 12 cloud providers I = {C1, · · · , C12} whose resource capacities
are given in the Table 1. These resource capacities are randomly chosen, first by
choosing one of the three buckets: small, medium and large; and then choosing a
capacity randomly within a range determined by that bucket type. Inspired from
Microsoft Azure, we let each cloud provider offer four types of virtual machines:
General Purpose (B2S), Storage Optimized (L4), Memory Optimized (E8 v3),
and Compute Optimized (F16 v2). The resource requirements of each type of
virtual machine is given in the Table 2. The same table also provides the hourly
rental price for each type of virtual machine.

We consider l = 45 different market scenarios. In the ith market scenario,
Mi, 1 ≤ i ≤ l, the oligopolist makes a price offer m = (m1, · · · ,mj , · · · ,m12)
wherein

mj = (1 +
i

100
)× v({Cj}). (3)

That means the oligopolist is offering a price which is i% greater than the value
a cloud provider can generate by working all alone. For small values of i, a cloud
provider can potentially get better payoff by forming a coalition; whereas for
larger values of i he may be better off taking up the oligopolist’s offer. This
can be observed from the Figure 2 which depicts how the stable coalition struc-
ture evolves with the increasing price offers from the oligopolist. The stable
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Table 1. Resource capacity of
cloud providers. vCPUs are ex-
pressed in 100s of cores, memory
and storage in 100 GB units.

vCPU Memory Storage

C1 36 44 1845
C2 55 74 1704
C3 120 165 548
C4 15 133 1906
C5 61 490 2100
C6 110 503 3164
C7 119 900 3468
C8 181 150 3900
C9 182 986 6814
C10 210 610 4654
C11 166 531 13000
C12 239 850 4100

Table 2. VM instance types, their resource
configurations and hourly rental prices.

vCPU Memory Storage Price
(in GB) (in GB) (per hour)

General 2 4 8 0.047$
Purpose

Storage 4 32 678 0.312$
Optimized

Memory 8 64 200 0.532$
Optimized

Compute 16 32 128 0.716$
Optimized

Fig. 2. Evolution of coalition structure with increasing price offers going from market
scenario M1 to M45 (refer Equation (3)).

coalition structures are computed using the greedy algorithm proposed in Sec-
tion 4.3. Each track of the semi-circle represents the coalition structure for a
given price offer. The purple colored cloud providers are those who take up
the oligopolists offer. Similar colored cloud providers in a track belong to the
same coalition. For example, at one percent price offer, the coalition structure is
CS = {{1, 2, 5, 11}, {3, 6}, {4, 10}, {8, 9}, {7, 12}}. The members of the last set
F ∗ = {7, 12} are those who accepted the offer made by the oligopolist. Further,
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the semi-circle shows only those tracks where there is a change in the coalition
structure from the previous market scenario. For example, since the coalition
structure did not change from the market scenario M7 till M17, the intervening
coalition structures are not represented. We can notice the increasing purple
color as we move from inside to outside in the semi-circle indicating that with
increasing price offers more cloud providers will lean towards the oligopolist.
This is further illustrated by the graph in Figure 3 which shows the size of
F ∗, |F ∗|, with increasing price offers. Another interesting observation is that a
cloud provider may take an oligopolist’s offer in market scenario Mi but may
change his mind in Mi′ where i′ > i. This is due to the overall change in the
coalition structure. This phenomenon can be observed by looking at the sector
corresponding to the cloud provider 5 in Figure 2.

Figure 4 shows the average marginal payoff of the cloud providers who pre-
ferred to form a peer-to-peer coalition. For a given market scenario, CS is a
stable coalition structure (refer definition (9)), then the average marginal payoff
is defined as

∑
Fi∈CS\F∗

∑
j∈Fi

βj(Fi)/|N \ F ∗|. As expected, with the increas-
ing price offer from the oligopolist, the marginal payoff goes down. However, it
need not be monotic, as it may increase locally due to the changes in the stable
coalition structure. Figure 5 shows the total time taken for the computation
of the stable coalition structure for a given market scenario. It can be noted
that overall it is in the order of milliseconds and hence computationally feasible
problem to solve. Further, with the increasing price offers, the number of feasible
coalitions go down, which makes the greedy algorithm converge faster.

For a coalition, we know that vS(S) is the total payoff available for the
coalition S. The combined payoff from an oligopolist to a coalition S is

∑
i∈Smi.

Figure 6 compares the coalitional payoff and the combined broker payoff for all
the coalitions in the market scenario M1. For cloud providers 7 and 12, who
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take up the oligopolist’s offer, these two values are almost the same (one percent
difference).

6 Related Work

Grozev et al. [1] provided a systematic taxonomy of various inter-cloud archi-
tectures. The peer-to-peer inter-cloud architecture and the broker based multi-
cloud architecture considered in this paper are based on their taxonomy. There
has been several works on federation formation and payoff distribution using
cooperative game theory [7–12]. However, none of these works consider the im-
pact of an oligopolist or a monopolist on coalition formation which is the main
focus of this paper. Niytao et al. [9] proposed the usage of stochastic linear pro-
gramming games for payoff distribution among coalition members. The payoff
distribution scheme we presented in this paper using linear production games
is similar to their work. The closest work related to ours in literature is due
to Fragnelli [13]. The author studied a market scenario which is very similar
to that of ours but the specific problem addressed is the pricing strategy to be
adopted by the players. Innes and Sexton [14] also studied very similar market
scenario but the problem they studied is the pricing strategy to be adopted by
the monopolist to deter coalition formation.

7 Conclusions

In this paper, we showed how we can model the influence of an oligopolist in a
cloud market where multiple cloud providers can potentially come together to
form a federation in order to increase their market reach. Further, we introduced
the notion of stable coalition structures in the presence of oligopolists and a
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greedy algorithm for computing them. We believe that our work paves way for
further research in this less studied facet of federated cloud computing.
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