
Learning Multi-Goal Inverse Kinematics in Humanoid Robot

by

Phaniteja S, Parijat Dewangan, Abhishek Sarkar, Madhava Krishna

in

International Sym posi um on Robotics 2018

Report No: IIIT/TR/2018/-1

Centre for Robotics
International Institute of Information Technology

Hyderabad - 500 032, INDIA
June 2018

Learning Multi-Goal Inverse Kinematics in Humanoid Robot
Phaniteja S*1, Parijat Dewangan*1, Abhishek Sarkar1, and Madhava Krishna K1

1Robotics Research Centre, International Institute of Information Technology, Hyderabad, India

Abstract

General Inverse Kinematic (IK) solvers may not guarantee real-time control of the end-effectors in external coordinates
along with maintaining stability. This work addresses this problem by using Reinforcement Learning (RL) for learning
an inverse kinematics solver for reachability tasks which ensures stability and self-collision avoidance while solving for
end effectors. We propose an actor-critic based algorithm to learn joint space trajectories of stable configuration for
solving inverse kinematics that can operate over continuous action spaces. Our approach is based on the idea of exploring
the entire workspace and learning the best possible configurations. The proposed strategy was evaluated on the highly
articulated upper body of a 27 degrees of freedom (DoF) humanoid for learning multi-goal reachability tasks of both
hands along with maintaining stability in double support phase. We show that the trained model was able to solve inverse
kinematics for both the hands, where the articulated torso contributed to both the tasks.

1 Introduction

The problem of inverse kinematics [1, 2] in any robotic
system is defined as a mapping from the end-effector coor-
dinates to actuator space i.e.,

θ = f−1(x) (1)

where θ ∈ Rn are the joint angles and x ∈ Rm repre-
sents the position and orientation vector of the end effec-
tor. In complex and redundant robotic systems like hu-
manoid robots, finding an inverse kinematic solution is not
straightforward and many a times it is a highly ill-posed
problem. This is because of the non-uniqueness of IK so-
lution. Many of the existing solvers [3, 4, 5, 6] provide
unique solutions without exploring the redundancy exist-
ing in the robots. This limits their application to humanoid
robots where constraints like stability and self collision
avoidance has be ensured along with the inverse kinematic
solution. Several redundancy resolution methods [7, 8] had
been proposed in the case of manipulators, but these meth-
ods become computationally expensive and may not yield
a real time solution due to presence of large number of DoF
in humanoid robots.
A much more complex problem to explore in this setting
is to solve IK for multiple end effectors simultaneously.
One direction would be using the above mentioned solvers
in sequential manner at each step of IK. In order to en-
able simultaneous solving of multiple end effectors in the
presence of constraints, augmented Jacobian [9] and ex-
tended Jacobian [10] were proposed. However these meth-
ods suffer from algorithmic singularities [11] apart from
above mentioned limitations. Learning based methods [12]
serve as a very good alternative that can overcome these
limitations as well as solve the IK in real time satisfying
the required constraints. Especially, reinforcement learn-
ing [13] provides a suitable framework for exploring the

*These authors have equal contribution.

Figure 1 27 DoF humanoid robot with articulated torso.

entire solution space and learning a generalized IK solver.
The most important criteria for a humanoid robot is sta-
bility and hence IK solver should ensure that this is not
violated in the final solution. Therefore, it is necessary to
include a measure of stability as a constraint into the IK
solver. Some of the recent advancements in RL like Deep
Q-learning (DQN) [14], Guided Policy Search [15], Trust
region policy optimization [16] and Deep Deterministic
Policy Gradient (DDPG) [17] provide us many frameworks
for learning a generalized IK solver in the presence of such
constraints. Among these frameworks, DDPG was pro-
posed in the context of learning continuous control tasks
and hence it becomes a natural choice to solve the problem
of IK. In this paper, we propose DDPG based IK solver for
computing IK of both the hands of humanoid simultane-
ously. The proposed IK solver will also take into account,
the criteria of stability and self-collision avoidance while

generating joint space configurations. Zero Moment Point
(ZMP) [18, 19] is used as the measure of stability and self-
collision detection is performed using the bounding box
approach [20].
The rest of the paper is organized as follows: Section 2
discusses the background needed for the framework. The
proposed framework for multi-goal inverse kinematics is
explained in section 3. Consequently, section 4 presents
the results and simulations for the proposed framework. Fi-
nally conclusions are presented in section 5.

2 Background

Robot learning is a field which is at an intersection of ma-
chine learning and robotics. It allows a robot to acquire
a skill or to adapt its environment through learning al-
gorithms. Reinforcement learning is an area in machine
learning where agents ought to take actions in an environ-
ment in order to maximise some notion of cumulative re-
wards. RL can be used to train an agent which learns from
the environment directly without the use of any external
data.
A recent work in deep RL for learning control tasks
[21] learns the door opening tasks using asynchronous
off-policy updates, combining the updates from multiple
robots. In another recent work [22], a humanoid robot
learns to perform a single-goal reachability task using
RL. In our work, we concentrate on learning dual-goal
reachability tasks simultaneously using both hands as end-
effectors, unlike [22] where only one hand is reaching
the goal. It should be noted that simultaneous dual goal
reaching problem is very complex to tackle and IK is not
straightforward. This work proposes an approach to learn
IK for dual arm reachability tasks in a humanoid robot
based on deep RL.
For learning an IK solver, we need to setup up the envi-
ronment for training. For training, we consider a standard
reinforcement learning setup with an agent interacting with
the environment E in discrete time steps. At each time step
t, the agent takes a state st ∈ S as input and performs an ac-
tion at ∈ A according to the policy π : S→ A and receives
the observations. These observations consist of reward, de-
noted by rt (∈R) and the future state, denoted by s′t . A fully
observable Markov Decision Process [13] is assumed with
state space S, action space A, a reward function r(st ,at)
and the initial state, s1 is assumed to be drawn from dis-
tribution p(s1). We also assume an infinite horizon with a
discount factor γ . The goal in any reinforcement learning
algorithms is to maximize the expected return:

Rt =
∞

∑
t=0

γ
tr(st ,at),

where γ ∈ [0,1]. The discounted state visitation distribu-
tion for a policy π is denoted by ρπ . In this work, we
consider only deterministic policies, i.e., π(st) = at .
Action-value function Q(st ,at) which is used in many RL
algorithms is defined as the expected return after taking an
action at in the state st and thereafter following the given

policy π:

Qπ(st ,at) = Ert ,st+1∼E [Rt |st ,at].

Thereby we can see that maximizing the action-value func-
tion results in maximization of the expected return. The ex-
pectation depends only on the environment and hence Qπ

can be learnt off-policy, using transitions from a different
behavioural policy β . Hence, the action value function can
be written as:

Qπ(st ,at) = Es∼ρβ ,at∼β ,rt∼E [Rt |st ,at]. (2)

Figure 2 Actor Critic Algorithm. Actor (Policy) is up-
dated based on the feedback from critic. Critic (Q) is up-
dated using Temporal Difference (TD) [13] method.

An actor-critic based policy learning algorithm imple-
ments a generalized policy iteration that alternates between
a policy evaluation and a policy improvement step. The
critic evaluates the current policy and the actor tries to im-
prove the current policy using feedback from the critic.
This process is shown diagrammatically in Fig 2. In this
paper we use DDPG, an actor-critic based algorithm that
uses double Q learning [23] and Deterministic Policy gra-
dient (DPG) [24] for policy evaluation and improvement
respectively. The complete algorithm and its application
for multi-IK is explained in the following section.

3 Learning Multi-goal Inverse
Kinematics for Humanoids

Motion planning for humanoids is a daunting task given
that they typically have 25 or more DoF. The problem is
further complicated by the fact that humanoids must be
controlled carefully in order to maintain dynamic stability.
Thus, existing motion planning techniques may not be ap-
plicable directly on humanoid robots. Hence, there is need
for efficient IK solvers for humanoids that can be easily
employed into motion planning algorithms. In this section,
we explain the proposed methodology and the underlying
modelling to learn inverse kinematics for multi goal reach-
ability tasks in humanoid robots.

3.1 Robot Model
The robot model used for study is shown in Fig 1. The
robot has a total height of 84cm, total weight below 5Kg
and 27 DoF. The main feature of this design is the 5 DoF
articulated torso, which enhances its flexibility and stabil-
ity. We can notice that the upper body constitutes of two
closed kinematic chains, where the torso is the common
sub-chain. In order to learn inverse kinematics of the 13
DoF upper body, we need to model the common chain (ar-
ticulated torso) in a effective way. In the following subsec-
tion, the procedure to learn a generalized IK solver for this
system is explained.

3.2 Multi IK using DDPG
DDPG is a deep reinforcement learning algorithm that
deals with continuous control tasks. It is an actor-critic
based algorithm that continuously improves the policy as it
explores the environment as explained in Section 2. Both
actor and critic are approximated using neural networks
(θ µ , θ Q). This algorithm uses off-policy mini-batch up-
date using replay buffer in order to ensure that data is sam-
pled from independently and identically distributions. The
problem of instability in training is addressed by using tar-
get networks (θ µ ′ , θ Q′).
Suppose Q(s,a|θ Q), µ(s|θ µ) represent critic and actor
networks respectively and Q′(s,a|θ Q′), µ ′(s|θ µ ′) repre-
sent their corresponding target networks. Given this
parametrization, the critic network weights are optimized
by minimizing the following loss function:

L(θ Q) = (Q(st ,at |θ Q)− yt)
2 (3)

where,

yt = r(st ,at)+ γQ′(st+1,µ
′
t+1(st+1|θ µ ′)|θ Q′). (4)

According to [24], the deterministic policy gradient is
given by:

∇θ µ J = ∇aQ(st ,at |θ Q)∇θ µ µ(s|θ µ). (5)

Suppose the learning rate is η , then the update on actor
network is given by:

θ
µ = θ

µ +η∇aQ(st ,at |θ Q)|a=µ(st |θ µ)∇θ µ µ(s|θ µ). (6)

The target networks follow slow updates according to Eq.
(7), where τ << 1.

θ
Q′ ← τθ

Q +(1− τ)θ Q′

θ
µ ′ ← τθ

µ +(1− τ)θ µ ′
(7)

3.2.1 State vector and network architecture
The chosen state vector consists of all the joint angles (q)
of the upper body, end-effectors coordinates and both goal
coordinates. It also contains flags related to collision, sta-
bility and coordinates of last joint of spine where both arms
are connected. The actor network is fed in with state vector
and it outputs the action vector that contains angular veloc-
ities of all the joints needed to move towards the goals. The

critic network takes state-action vector as input and outputs
its corresponding action-value. The state and action vector
dimensions used in our model are 30 and 13 respectively.
Both actor and critic networks are fully connected two hid-
den layers each. In both networks, the first hidden layer
consists of 700 units and the second hidden layer con-
sists of 400 units with CReLu activation in both the layers.
Batch normalization and a drop-out of 20% is present in
both hidden layers of actor. Tanh activation is used in the
output layer of actor. In critic network, first hidden layer
has a drop-out of 30% and batch normalization, whereas
the second hidden layer has a drop-out of 20% with no
batch normalization. L2 regularization of 0.01 is used in
all layers of the critic network. The output layer in critic
don’t have any activation function.
The network architecture for the actor and critic is given
in Fig 3. Note that use of CReLu doubles the depth of the
activations.

(a) Actor network : Takes state vector as input and outputs action
vector. The activation function and the number of units are shown
on the top of each layer.

(b) Critic network: Takes concatenated state-action vector as input
and outputs action value function, Q. The activation function and
the number of units are shown on the top of each layer.

Figure 3 Actor and Critic Network Architectures

3.2.2 Reward function
In deep RL frameworks, reward function is an integral part
of the network update and hence the underlying policy that
is learnt by the network. For learning multi-goal inverse
kinematics, we need to devise a global reward function

such that it addresses reachability tasks of both the hands
simultaneously. The main objective of an IK problem is
to provide a set of angles (q) that are needed to reach the
given goal position.
In order to ensure that the configurations given out by the
solver are within the stability region, a large negative re-
ward is given whenever it goes out of stability bounds. The
final reward function is shown below.

ri =

{
−αdisti i f stableand collision f ree
−κ i f unstableor collides

(8)

i f handi reachesgoal then ri = ri +λ (9)

If both the hands reach the goal simultaneously then

ri = β ∀i = 1,2

where ri denotes reward of ith task. The global reward re-
turned by the environment is given by the sum of rewards
of both the tasks, that is,

r = r1 + r2

where α,β ,κ are the normalization constants, disti is the
absolute distance between goal position and end effector
position for hand i where i = 1,2.

3.2.3 Environment setting and Training

Algorithm 1 Multi-IK learning using DDPG

1: Randomly initialize actor-critic networks. Copy the
weights into the target networks.

2: Initialize replay buffer R.
3: for i = 1 to MaxE pisodes do
4: s = env.Reset()
5: for j = 1 to MaxStep do
6: a = actor.get_action(s) + N . N is exploration

noise
7: s′,r, tr = env.Step(a)
8: R.store(s,a,r,s′)
9: if (R.size() > batch_size) then

10: batch = R.sample(batch_size)
11: critic.update(batch)
12: actor.update(critic.gradients,batch)
13: actor.target_update(), critic.target_update()
14: end if
15: if (done or tr) then
16: break
17: end if
18: end for
19: end for

In order to learn a generalized inverse kinematics, the en-
tire workspace need to be spanned. To ensure that, the start
configuration and goal positions are sampled randomly at
the start of each episode. This is done in the env.Reset()
step shown in Algorithm 1. In env.Step(a), robot environ-
ment executes the action a and returns next state s′, reward
r and terminate flag tr. The terminate flag will be one if
there is self-collision or the robot loses balance.

The robot is trained in MATLAB using Robotics toolbox
and tested in MuJoCo, a dynamic simulation environment.
The training setting is modelled in TensorFlow code-base
in Python. RMSProp optimizer is used to train both actor
and critic networks with learning rate 0.0001 for both. Tar-
get networks are used for both critic and actor networks.
These target networks are copied into their corresponding
actor and critic network after every 1000 and 1100 steps
respectively. We used a replay buffer (R) of size 50000 to
store the information of each step. Training was run for
10000 episodes with 150 steps in each episode. A mini-
batch of size 64 is sampled randomly from the replay buffer
for training the networks. A normally distributed decay-
ing noise function was used for exploration. The episode
was terminated in between if the robot went unstable or
self-collided. Complete algorithm for training is shown in
algorithm 1. Results and observations of training are pre-
sented and discussed in the subsequent section.

4 Results and Simulations

The humanoid robot shown in Fig. 1 was trained for reach-
ability tasks of both the hands, taking into account stability
and collision avoidance using the reward setting explained
in previous section. For incorporating stability criteria in
the reward function, we used Zero Moment Point[25], a
dynamic stability check measure. It is calculated as:

px =
Mgx− L̇y

Mg+ Ṗz

py =
Mgy+ L̇x

Mg+ Ṗz

(10)

where x, y are the x and y coordinates of center of mass,
M is the total Mass of the robot, g is acceleration due to
gravity and [Lx, Ly, Lz], [Px, Py, Pz] are the angular and
linear momentum respectively with respect to base frame.

4.1 Training Results

Figure 4 Average reward: X-axis shows episodes and
Y-axis shows the value of the reward. Coloured region is
95% confidence interval.

Figure 5 Average error graphs of left (red line) and right
(blue line) hand. X-axis shows episodes and Y-axis show
value of the errors.

In order to evaluate the learning process, average reward
per episode and error per episode are plotted, which are
shown in Figs. 4,5. Fig. 4 shows the average reward curve
with episodes during training. The bold line shows the
reward value and coloured region around shows the 95%
confidence interval. It can be observed that the average re-
ward increases gradually and saturates showing completion
of the training process.
In Fig. 5, the error curves of both the hands from their
respective goals at the end of each episode are plotted.
It can observed that these errors decrease gradually and
saturates to a value very close to zero. This signifies
the completion of the task, as error depicts the distance
between the hand and their respective goals. In Fig. 5,
each coloured line indicates the error corresponding to
one task. As both the tasks were trained simultaneously,
we can see that the both the curves of average error have
similar profile.

It can be observed that both reward and error plots started
to saturate after 3000 episodes which shows that the opti-
mal solution has been attained, therefore indicating that the
network has learnt the optimal IK solver.

4.2 Testing in dynamic simulator
The learnt IK solver is tested by providing several random
goal positions. For testing, we used a dynamic simulator,
MuJoCo, instead of MATLAB, to show the transferability
of the solver to a more realistic environment. Some
snippets of humanoid from this testing are shown in Fig.
6. The snippets show two different goal position settings
for both the hands, and it can be seen that the solver was
able to successfully solve in both settings. We can also
observe that the start, intermediate and the final positions
are stable configurations. This shows the framework was
able to learn the final IK solution as well as the joint
trajectories needed to reach given goal positions. Thus,

Figure 6 Snippets of two cases of humanoid simulation
in MuJoCo, where the trained model is tested for multi-
goal reachability task. In A, one goal position is the front
and another in back. In B, both goal positions are in front
but one is upwards whereas the other one is just in front
of pelvis.

we can conclude that the framework has learnt a stable
multi-goal IK solver for 27 DoF humanoid which gives
stable configurations at all intermediate steps.

The above learnt IK solver can be easily transferred to a
real robot by using velocity level controllers. This can be
done easily by providing the goal positions to the IK solver
and then using the solver in the feedback loop of the veloc-
ity controllers.

5 Conclusion

In this paper, a methodology to learn inverse kinematics
of multiple open kinematic chains with shared sub-chains
was proposed. The proposed methodology was based on
DDPG and was able to learn IK solver that can simultane-
ously solve IK for multiple end effectors. A vivid descrip-
tion of the method and the networks used are presented
along with reward function modelling.
The proposed framework was applied to learn generalized
IK solver for a 27 DoF humanoid with 5 DoF articulated
torso for reachability tasks of both hands and results were
presented. Results show that the framework is capable of
learning inverse kinematics (also joint trajectories), along
with maintaining stability and self-collision avoidance.
Although the proposed model has limitations like collision
avoidance and accuracy, this model can be good prototype
for solving inverse kinematics on highly redundant manip-
ulators.

Future work involves making the framework more versa-
tile such that it could be extended to various other agents as
well. We will also focus on including collision avoidance
with the environments into the framework.

6 Literature

[1] A. Colomé, “Smooth inverse kinematics algorithms
for serial redundant robots,” Ph.D. dissertation, Mas-
ter Thesis, Institut de Robotica i Informatica In-
dustrial (IRI), Universitat Politecnica de Catalunya
(UPC), Barcelona, Spain, 2011.

[2] Y. Chua, K. P. Tee, and R. Yan, “Robust optimal in-
verse kinematics with self-collision avoidance for a
humanoid robot,” in RO-MAN, 2013 IEEE. IEEE,
2013, pp. 496–502.

[3] D. E. Whitney, “Resolved motion rate control of ma-
nipulators and human prostheses,” IEEE Transac-
tions on man-machine systems, vol. 10, no. 2, pp. 47–
53, 1969.

[4] S. R. Buss, “Introduction to inverse kinematics with
jacobian transpose, pseudoinverse and damped least
squares methods,” IEEE Journal of Robotics and Au-
tomation, vol. 17, no. 1-19, p. 16, 2004.

[5] J. J. Moré, “The levenberg-marquardt algorithm: im-
plementation and theory,” in Numerical analysis.
Springer, 1978, pp. 105–116.

[6] M. F. Møller, “A scaled conjugate gradient algorithm
for fast supervised learning,” Neural networks, vol. 6,
no. 4, pp. 525–533, 1993.

[7] S. Chiaverini, “Singularity-robust task-priority re-
dundancy resolution for real-time kinematic con-
trol of robot manipulators,” IEEE Transactions on
Robotics and Automation, vol. 13, no. 3, pp. 398–410,
1997.

[8] J. Hollerbach and K. Suh, “Redundancy resolution
of manipulators through torque optimization,” IEEE
Journal on Robotics and Automation, vol. 3, no. 4,
pp. 308–316, 1987.

[9] B. Siciliano, “Kinematic control of redundant robot
manipulators: A tutorial,” Journal of intelligent and
robotic systems, vol. 3, no. 3, pp. 201–212, 1990.

[10] J. Baillieul, “Kinematic programming alternatives for
redundant manipulators,” in Robotics and Automa-
tion. Proceedings. 1985 IEEE International Confer-
ence on, vol. 2. IEEE, 1985, pp. 722–728.

[11] J.Baillieul, “A constraint oriented approach to inverse
problems for kinematically redundant manipulators,”
in Robotics and Automation. Proceedings. 1987 IEEE
International Conference on, vol. 4. IEEE, 1987, pp.
1827–1833.

[12] A. D’Souza, S. Vijayakumar, and S. Schaal, “Learn-
ing inverse kinematics,” in Intelligent Robots and
Systems, 2001. Proceedings. 2001 IEEE/RSJ Inter-
national Conference on, vol. 1. IEEE, 2001, pp.
298–303.

[13] R. S. Sutton and A. G. Barto, Reinforcement learn-
ing: An introduction. MIT press Cambridge, 1998,
vol. 1, no. 1.

[14] H. Van Hasselt, A. Guez, and D. Silver, “Deep rein-
forcement learning with double q-learning.” in AAAI,
2016, pp. 2094–2100.

[15] S. Levine and V. Koltun, “Guided policy search,” in

Proceedings of the 30th International Conference on
Machine Learning (ICML-13), 2013, pp. 1–9.

[16] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and
P. Moritz, “Trust region policy optimization,” in Pro-
ceedings of the 32nd International Conference on
Machine Learning (ICML-15), 2015, pp. 1889–1897.

[17] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess,
T. Erez, Y. Tassa, D. Silver, and D. Wierstra, “Con-
tinuous control with deep reinforcement learning,”
arXiv preprint arXiv:1509.02971, 2015.

[18] M. Vukobratović and J. Stepanenko, “On the stabil-
ity of anthropomorphic systems,” Mathematical bio-
sciences, vol. 15, no. 1-2, pp. 1–37, 1972.

[19] M. Dekker, “Zero-moment point method for stable
biped walking,” Eindhoven University of Technology,
2009.

[20] C. Dube, M. Tsoeu, and J. Tapson, “A model of
the humanoid body for self collision detection based
on elliptical capsules,” in Robotics and Biomimetics
(ROBIO), 2011 IEEE International Conference on.
IEEE, 2011, pp. 2397–2402.

[21] S. Gu, E. Holly, T. Lillicrap, and S. Levine, “Deep
reinforcement learning for robotic manipulation with
asynchronous off-policy updates,” in Robotics and
Automation (ICRA), 2017 IEEE International Con-
ference on. IEEE, 2017, pp. 3389–3396.

[22] S. Phaniteja, P. Dewangan, P. Guhan, A. Sarkar, and
K. M. Krishna, “A deep reinforcement learning ap-
proach for dynamically stable inverse kinematics of
humanoid robots,” in 2017 IEEE International Con-
ference on Robotics and Biomimetics (ROBIO), Dec
2017, pp. 1818–1823.

[23] H. V. Hasselt, “Double q-learning,” in Advances in
Neural Information Processing Systems, 2010, pp.
2613–2621.

[24] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra,
and M. Riedmiller, “Deterministic policy gradient al-
gorithms,” in Proceedings of the 31st International
Conference on Machine Learning (ICML-14), 2014,
pp. 387–395.

[25] S. Kajita, H. Hirukawa, K. Harada, and K. Yokoi, In-
troduction to humanoid robotics. Springer, 2014,
vol. 101.

